
Finding Open options
An Open Source software evaluation model

with a case study on
Course Management Systems

Master Thesis

Karin van den Berg

Tilburg, August 2005

Finding Open options

An Open Source software evaluation model
with a case study on

Course Management Systems

Master Thesis

Karin van den Berg
596809

thesis@karinvandenberg.nl

August, 2005

Supervisors:
drs. Leo N.M. Remijn

dr. ir. Jeroen J.A.C. Hoppenbrouwers

This Master thesis was written as part of the Information Management and
Science program at Tilburg University. The thesis defence will take place on

the 23rd of August, 2005 in room B834 at Tilburg University.

Summary

The Open Source software market is getting more and more attention. Large IT
corporations such as IBM and Novell are investing in Open Source software. Open
Source software development is very different from traditional proprietary software.
In order to understand Open Source software better, this thesis offers a model for
Open Source software evaluation, which can be used as a tool to find the right soft-
ware package to meet the user’s needs.

This research project was performed at Tilburg University in the Department of In-
formation Systems and Management. The goal was to get a better understanding of
Open Source software and to make the Open Source software process more under-
standable for those who evaluate this type of software.

An introduction to Open Source software is followed by the Open Source software
evaluation model, using the criteria found in Open Source literature.

Community – the driving force behind an Open Source project
Release Activity – showing the progress made by the developers
Longevity – how long the product has been around
License – is one of the general Open Source licenses used
Support – from the community as well as paid support options
Documentation – user manuals and tutorials, developer documentation
Security – responding to vulnerabilities
Functionality – testing against functional requirements
Integration – standards, modularity and collaboration with other products
Goal and Origin – why was the project started and what is the current goal

These criteria form the key terms of the model. The evaluation process is described
using these criteria. The practical part of the model consists of two steps. In the
first step selection on the candidate list is performed, using four of the above criteria:
Functionality, Community, Release Activity and Longevity. These criteria were se-
lected because they can be evaluated quickly for each candidate in order to eliminate
non-viable candidates and select the best ones. This step results in a ‘short list’ of
candidates that can be evaluated in depth in the second step, taking a closer look at
the software and the project using all ten criteria.

In order to test this model on real Open Source software, a case study was performed
on Course Management Systems. In this case study the model is applied on a candi-
date list of 36 systems, and evaluation is performed on the top two systems found in
the selection step. This evaluation led to a clear conclusion. The best system in this
evaluation is the Course Management System called Moodle. The results of the case
study are consistent with real life performance of the Course Management Systems.

ii

Nederlandse Samenvatting

De Open Source software markt krijgt steeds meer aandacht. Grote IT bedrijven
zoals IBM en Novell investeren in Open Source software. Open Source software ont-
wikkeling wijkt sterk af van de traditionele ‘proprietary’ software. Om Open Source
software beter te begrijpen biedt deze scriptie een model voor Open Source software
evaluatie, wat gebruikt kan worden om de juiste software te vinden.
Dit onderzoeksproject is uitgevoerd aan de Universiteit van Tilburg op het departe-
ment Informatiekunde. Het doel was om een beter inzicht te krijgen in Open Source
software en deze begrijpelijker te maken voor het evalueren van deze software.
Een introductie van Open Source software wordt gevolgd door het Open Source soft-
ware evaluatie model, gebruik makend van de volgende criteria uit de Open Source
literatuur.

• Community – de drijvende kracht achter een Open Source project
• Release Activiteit – laat de voortgang van de ontwikkelaars zien
• Levensduur – hoe lang bestaat een product al
• Licentie – gebruikt het product een van de publieke Open Source licenties
• Support – van de community en betaalde opties
• Documentatie – handleidingen voor gebruikers en ontwikkelaars
• Veiligheid – reageren op veiligheidsgaten
• Functionaliteit – het testen van de vereiste functionaliteit
• Integratie – Standaarden, modulariteit en samenwerking met andere produc-

ten
• Doel en oorsprong – waarom is het project gestart en wat is het huidige doel

Deze criteria vormen de kernbegrippen van het model waarmee het evaluatieproces
wordt doorlopen. Het praktische deel van het model bestaat uit twee stappen. In
de eerste stap wordt selectie toegepast op de lijst kandidaten, gebruik makend van
vier van de bovengenoemde criteria: Functionaliteit, Community, Release Activiteit
en Levensduur. Deze criteria zijn geselecteerd omdat ze snel kunnen worden ge-
evalueerd voor elke kandidaat om de ongeschikte kandidaten te elimineren en de
beste systemen te selecteren. Uit deze stap komt een ‘short list’ van kandidaten die
verder kunnen worden geëvalueerd in de tweede stap, waarbij de software en het
project nader worden bekeken met behulp van alle criteria.
Om het model te testen is een case study uitgevoerd op Course Management Sys-
temen1. De selectie is toegepast op 36 kandidaten. De twee beste systemen uit de
selectie zijn geëvalueerd. Deze evaluatie leidde tot een duidelijke conclusie waarbij
het Course Management Systeem genaamd Moodle het beste systeem is. De resulta-
ten van de case study kwamen overeen met de werkelijke prestaties van de systemen.

1ook wel bekend als Digitale Leeromgeving (DLO)

iii

Preface

When I approached my third year thesis supervisor drs. Leo Remijn about conducting
a research project for my Master Thesis in the summer of 2004, I knew I wanted a
subject in the line of software programming. I have been interested in programming
for some time now, something that evolved while following several subjects followed
here at Tilburg University. We agreed on a subject to do with programming in com-
bination with the subject of E-Learning. His suggestion: Open Source Course Man-
agement Systems. Upon investigating this subject I found some interesting projects.
Eventually my interested shifted in the direction of Open Source software in general.
This very interesting but not much chartered subject in the academic world grabbed
my interest with force. A new idea was born, which resulted in the thesis you are
now reading.

I would like to thank first of all my supervisor, drs. Leo Remijn, for his support and
advice during my time at the department. He has been very supportive of my inter-
ests and has given me great supervision and advice during all those months.

I would also like to extend my gratitude to the people at the department ‘lab’, the
place I spend four days a week for the past nine months. I had a great time working
there and they have been very helpful, giving advice on a large variety of subjects
from study related things to life itself. In particular I would like to thank Jeroen
Hoppenbrouwers for helping me in getting my ideas to take shape and giving lots of
advice, and Kees Leune who has been very helpful in practical things as well as giving
advice and sharing knowledge with me and my lab coworkers. My lab coworkers also
deserve a note of thanks for the time we have had during my thesis work at B737.
Sebas, Maarten, Ivo and Jeroen: Thanks for the great times!

Finally I would like to thank my mother and father who have always been very sup-
portive of my goals, and last but certainly not least, my boyfriend of eight years,
Werner, who’s patience and support during the six years of my university work has
been tremendous.

I have had a wonderful time doing the research and writing this thesis, and I have
learned a lot that will be very valuable in my next step as a freelance programmer.

Karin van den Berg
Tilburg, August 15 2005

iv

Contents

Summary ii

Nederlandse Samenvatting iii

Preface iv

1 Introduction 1
1.1 Objective and Research Question . 1

1.1.1 Scope . 2
1.2 Method . 3

1.2.1 Literature . 3
1.2.2 Model . 3
1.2.3 Case Study . 3

1.3 Outline . 4

2 About Open Source Software 5
2.1 Source Code . 6
2.2 Open Source software development . 6
2.3 Free or Open Source? . 7
2.4 Proprietary Software . 7
2.5 Culture & Movements . 7
2.6 Unique characteristics . 9

3 Open Source Software Evaluation 10
3.1 The Criteria . 10

3.1.1 Goal and Origin . 11
3.2 Description of the criteria . 12

3.2.1 Community . 12
3.2.2 Release activity . 12
3.2.3 Longevity . 13
3.2.4 License . 14
3.2.5 Support . 14
3.2.6 Documentation . 15
3.2.7 Security . 16
3.2.8 Functionality . 16
3.2.9 Integration . 16

v

Contents vi

3.2.10 Goal and origin . 18
3.3 Selection . 18

3.3.1 The Selection Method . 19
3.3.2 The Criteria . 19

3.4 Evaluation . 21
3.4.1 Community . 22
3.4.2 Release Activity . 22
3.4.3 Longevity . 23
3.4.4 License . 23
3.4.5 Support . 23
3.4.6 Documentation . 24
3.4.7 Security . 25
3.4.8 Functionality . 26
3.4.9 Integration . 26
3.4.10 Goal and Origin . 27

3.5 Model overview . 27

4 Case Study: Course Management Systems 29
4.1 Introduction . 29
4.2 Selection . 30
4.3 Evaluation . 34
4.4 Case Study: Conclusion . 38

5 Conclusion & Further Research Recommendations 40
5.1 Research Results . 40
5.2 Contribution . 42
5.3 Recommendations for Further Research 43

Bibliography 44

A The Open Source Definition 50

B Community Activity 53

C Case Study – Functional Requirements 56

D Use of CMSs in Dutch Universities 57

E Candidate List 58

F Selection Results 60

G Moodle Philosophy 69

H ATutor Philosophy 72

I CMS Evaluation 76

J Remarks on validity of case study results 91

Chapter 1

Introduction

‘IBM tests new ways to support open source’ (Sharma, 2005)
‘Indian president calls for open source in defense’ (Sharma, 2004)
‘Nokia And Apple Collaborate On Open Source Browser’ (Carless, 2005)
‘California considers open-source shift’ (Becker, 2004)

These are just a few of the many news headlines that show the rise of Open Source
usage in business and government. Open Source has been getting much attention
in the last few years. Many corporations, large and small, have taken an interest
in this growing software market that shows some strong differences with traditional
software. Open Source is no longer seen as an insignificant niche market but as a
serious development in the software market.

Businesses as well as educational institutions can benefit from Open Source software.
However, it is still a mysterious and sometimes even scary world for many people.
News stories about the risks of Open Source software, whether they are genuine or
not, can cause uncertainty with the IT managers that have to make the decisions
about the company’s IT policy and the software they use.

The Open Source software market offers some great opportunities, but needs to be
understood before evaluating the software for use in businesses and institutions. This
thesis was written to give those interested in using Open Source software an idea of
what to look for in an Open Source project.

1.1 Objective and Research Question

In the research project that was conducted at the Department of Information Systems
and Management at Tilburg University, was done to get a better understanding of the
Open Source world and the unique approach of Open Source software development.
This knowledge can be used in the field of software evaluation.

The goal of this thesis is to give a method of Open Source software evaluation that
anyone could use. Most evaluation reports give a summary of the results but say little
or nothing about the method used to get those results. With the rapid development
of software, especially Open Source software, those results are not valid very long,
because the software changes so fast, so the results themselves are not as valuable
as the method for getting those results. In this thesis, a detailed description of the

1

Chapter 1. Introduction 2

method is given as well as a case study in which a full description is included of how
the model is applied.

The research question addressed in this thesis is the following:

‘Is it possible to define a software evaluation model specifically aimed at
Open Source software, and can this model be applied to select a Course
Management System?’
To answer this question, the following subquestions are used:

• Are there characteristics that make Open Source software unique that are rel-
evant to software evaluation, and if so, what are they?

• Which criteria can be defined for Open Source software selection and evalua-
tion?

• What information is needed to score these criteria?

In order to answer these questions the Open Source market will be studied using
literature and information from the Internet. With this knowledge a model for Open
Source software evaluation is created that will give insights into the unique charac-
teristics of Open Source software relevant to those who intend to use it. This model
should give an answer to the question which Open Source software project in a soft-
ware category is best suited for use in the evaluator’s business or institution.

To test the constructed model in a real life situation a case study will be performed
in which this model is used. The target software category is Course Management
Systems. The central question for the case study is:

• How well does this model apply to evaluation of Course Management Systems?

The market of Open Source Course Management Systems (CMSs)1 is explored using
the evaluation model. CMSs are being used more and more in universities to support
face-to-face classes. However, aside from the two proprietary market leaders, Black-
board and WebCT, not many other systems are being used as of yet. The Open Source
market may offer viable alternatives.

1.1.1 Scope

The systems this model is aimed at can vary from small software packages to large
systems. However, for very small software that does not perform a critical function,
following the whole model is probably too elaborate, but certain parts may still be
useful. The case study tests the model on a large type of system, the Course Manage-
ment System. This type of system offers a range of functionality for a large number
of users that use the system simultaneously.

This thesis is not about comparing Open Source software to proprietary software. It
is about the unique characteristics of Open Source software development and how to
evaluate this software in terms of these characteristics, what things require attention
when evaluating software in the Open Source market.

1Not to be confused with Content Management Systems, also often abbreviated as CMS

Chapter 1. Introduction 3

Open Source software is in most cases developed in a very open environment. In-
formation that would not be available in a proprietary setting can be used when
evaluating Open Source software to give a better picture of the software and the
project that brings it forth (Wheeler, 2005). It also gives a better idea of the potential
continuity of the project. Traditional software evaluation methods focus mostly on
the software itself, the functionality, usability and price. With the model that is pre-
sented here, a much broader approach is used for evaluating Open Source software
using the additional available information.

1.2 Method

The method used to construct this thesis consists of three parts: literature study,
construction of the evaluation model and the case study.

1.2.1 Literature

Open Source is a relatively new field of study in the academic world. The number of
articles written on the subject is not high.

To start the literature study, general Open Source articles and information is used
to get a good global idea of Open Source software. This literature will also be the
basis for the first chapter. In order to establish the criteria for the evaluation model,
literature on comparing Open Source software and other models such as Open Source
software maturity models are consulted.

Because scientific literature from the academic libraries may not offer enough to com-
plete the research, other sources need to be explored as well, by using search engines
on the Internet, for example. Of course the validity of non-scientific resources is ver-
ified.

1.2.2 Model

From the literature mentioned above, the Open Source evaluation criteria are iden-
tified. These will be the key terms of the evaluation model for Open Source software.

The model consists of two parts. The first part describes the background of the cri-
teria, what effect they have on the Open Source software project and why they are
important. In the second part the evaluation process is described, explaining the
method for identifying the key values for each criterion.

1.2.3 Case Study

The case study will be performed on Course Management Systems. This software
category was chosen because it concerns reasonably large applications, targeted at
institution wide use at educational institutions, which warrants a full evaluation.
A list of candidates is constructed using comparison reports and websites on CMSs.
The model created in the previous step will be followed to identify the highest scoring
systems. The evaluation process and the observations made are described. The final
result is calculated for each system and a ranked list is made of all systems. These

Chapter 1. Introduction 4

results are compared to existing performance results of these systems, in terms of
adoption and performance in other comparisons, to determine whether the model
leads to an acceptable result.

1.3 Outline

Figure 1.1 gives a graphical representation of the structure of this thesis.

Criteria
Description

Ch. 2
Open Source
introduction

Evaluation
Process

Ch. 3
Open Source

evaluation model

Ch. 4
Case Study

Selection

Indepth
Evaluation

Ch. 5
Conclusion &

Further Research

Ch. 1
Introduction &

Research Question

Evaluation

Introduction

Results &
Conclusion

Figure 1.1: Thesis Outline

Chapter 2 is an introduction to Open Source, including the Open Source development
method and the Open Source culture. In chapter 3 the evaluation model is discussed,
starting by a description of the criteria in section 3.2, followed by a description the
selection process in 3.3 and the in-depth evaluation process in 3.4. In chapter 4 the
case study that has been performed will be outlined, starting in 4.1 with an intro-
duction on Course Management Systems and the functional requirements set for the
CMS in this case study. The model is applied to the candidates, following the selec-
tion process to select the top two candidates in 4.2 that are evaluated in-depth in 4.3.
The case study is closed by the presentation of results and the case study conclusion
in 4.4 where the results are validated. Finally, the Conclusion answers the research
question in 5.1, and recommendations for further research are made in 5.3.

Chapter 2

About Open Source Software

Although Open Source software has existed since the 1960’s (Weber, 2004, chap. 2),
only in the last few years has it gotten much attention. In 1983 the Free Software
Foundation was founded by Richard Stallman (Hars and Ou, 2002). The term ‘Open
Source’ was introduced in 1998 (Raymond, 1998a). Since then more and more compa-
nies have taken an interest in Open Source software. Recently Novell acquired Suse
Linux, one of the distributions of the Linux operating system, taking their embrace
of Open Source a step further (Novell, 2003), and with this expanding the enterprise
market for Linux.

Linux and Open Source are often linked in Open Source literature, and it may seem
that Linux and its added software is all there is in the Open Source market. How-
ever, Open Source software is much more than Linux and Linux-compatible software
(O’Reilly, 1999). Many more examples of Open Source software exist, such as the
Apache web server, with a market share of almost 70% (Netcraft, 2005), the web lan-
guage PHP, the database server MySQL, the office suite OpenOffice.org and a very
large number of web applications (Wheeler, 2004).

The source code, the instructions that make up the ‘recipe’ for a software package
(Weber, 2004, p.4), is freely available to its users in the case of Open Source software.
The term Open Source is defined by the Open Source Initiative (OSI) in the Open
Source Definition (OSI, 2002). The full definition can be found in Appendix A and
can be summarised as:

• The software must be freely distributable

• The source code must be included in the distribution or there is a well-publicised
method of obtaining the source code

• Derived works and modifications are allowed

• The license must not be specific to a product, not restrict other software and be
technology-neutral

The following sections give some background information on Open Source software,
the development process and the culture, which helps to understand the Open Source
movement as a whole and the unique characteristics of Open Source software that are
used in the evaluation process.

5

Chapter 2. About Open Source Software 6

2.1 Source Code

The source code of any software is written in a programming language, for example
C, Pascal or web programming languages like PHP. This code is written in textual
form. The source code consists of instructions that define how a program behaves.
The programmer can add or change instructions to adjust the program’s behaviour
and add functionality. (Weber, 2004, p.4)

Figure 2.1 shows an example of a very basic piece of source code and its result.

Figure 2.1: Source Code Example

On the right the instructions are shown. This code is written in the web language
PHP. By pointing a browser to the file on the server, the result as shown on the left is
displayed. The lines in the code preceded by two slashes (//) are comments. These are
ignored when the code is executed, and are used to explain what certain code does
and why. The words preceded by a dollar sign ($) are variables in which values of
executed code can be stored.

2.2 Open Source software development

Open Source software offers the source code along with the software, at no charge1.
This enables the user to change the instructions of the software, changing its be-
haviour, adding functionality, and so on. It gives anyone the opportunity to partici-
pate in the development of the software project (Wheeler, 2005).

Open Source projects are, in most cases, run on the Internet. In fact, the Inter-
net enabled Open Source projects to form and grow (Weber, 2004, p.83). Open Source
projects’ websites carry much information: discussions, documentation, bug databases,
and so on. This information is very valuable for the evaluation of Open Source soft-
ware.

Most Open Source projects encourage users to participate in the project in any way
1except perhaps distribution costs

Chapter 2. About Open Source Software 7

they can, from filing bug reports2 to development of the source code. When the user
wants something changed or added to the software, he is at liberty to do it himself,
but by working together with the project community and contribute the changes in
source code back to the project, the code will be a part of the software for everyone,
which will keep it maintained and avoid problems when upgrading the software. If
the user keeps the code to himself, he will have to find a way to integrate any updates
to the software in with his changes (Glass, 2003). Open Source software developers
work together voluntarily to create and improve a product they want to use. They
also get a certain satisfaction from being part of the project. There is a number of
articles available on the motivation of Open Source software development, such as
Hars and Ou (2002) and Hertel (2003).

2.3 Free or Open Source?

The term ‘Open Source’ was first introduced by Eric. S. Raymond (Raymond, 1998a)
in 1998 to eliminate the confusion that came with the term ‘Free software’ that was
being used thus far. Here ‘Free’ was meant as Freedom, also indicated by the term
‘Libre’. Another way to describe it is ‘free as in speech, not free as in beer’ (Weber,
2004, p.5). However, ‘free’ is also used for software that is available at no cost, but
without the source code being available. This type of software is often labelled as
‘freeware’.

To this day there are still advocates of using the term ‘Free/Libre software’ instead
of ‘Open Source software’, mainly on the side of the Free Software Foundation (FSF)
(FSF, 2005b)

2.4 Proprietary Software

Software that is not Open Source is also referred to with different terms, such as
commercial software or proprietary software. Some will argue that commercial soft-
ware can still be Open Source software, since it can be used commercially (FSF,
2005a). ‘Proprietary’ is a term used in many documents on Open Source, indicat-
ing the ‘closed source’ software. Proprietary Software is software where the source
code belongs strictly to the vendor and is not given to the public.

In this thesis the characteristics that distinguish Open Source software from pro-
prietary software are the main focal point. The model in the next chapter is meant
for evaluation of different Open Source systems, not a mix of proprietary and Open
Source software or comparing proprietary software to Open Source software.

2.5 Culture & Movements

The Open Source movement is as much a culture as it is a development method. The
culture is mostly one of sharing and collaboration, often with people from all over the

2a report of a problem in the software that the developers can fix with enough information on how to
reproduce the problem

Chapter 2. About Open Source Software 8

world. However, as was briefly addressed before, there is some discussion within the
Open Source movement.

The two key groups in the Open Source culture can be described using the comparison
by Raymond (1998c) as ‘The pragmatists and the purists’.

He describes two degrees of variation: zealotry – whether something, in this case
Open Source, is seen as a means to an end or an end in itself – and hostility to
commercial software. The purist is a person of great zeal and high hostility to com-
mercial software. A pragmatist is only moderately anti-commercial and sees open
source more as a means than an end.

The purist group can be found mostly in the Free Software Foundation (FSF3), founded
by Richard M. Stallman (Raymond, 1998c). The FSF has its origins in the GNU4

group, which has also introduced the GNU GPL5, a strong expression of the purists’
view. The GNU GPL will be discussed further in the next chapter.

The FSF views Free or Open Source software as a right, and non-free software as
doing harm (Stallman, 1992), while the pragmatists view Open Source software de-
velopment as a nice method of creating good software. The FSF promotes four kinds
of freedom (FSF, 2005a):

1. The freedom to run the program, for any purpose (freedom 0)
2. The freedom to study how the program works and adapt it (freedom 1)
3. The freedom to redistribute copies (freedom 2)
4. The freedom to improve the program and release the improvements (freedom 3)

A key principle that is also reflected in the license that is used and promoted by
the FSF, the GNU GPL, is copyleft. A copyleft license uses copyright to protect the
licensed source code from becoming incorporated in closed source software. Anything
that is licensed under a copyleft license has to stay under that license, including any
derivatives (Weber, 2004, p.48).

The FSF freedoms are largely coherent with the Open Source Definition mentioned
earlier, though the FSF believes only in copyleft-type licenses, while the OSI defini-
tion also approves non-copyleft Open Source licenses.

The pragmatists group has grown much in the Linux movement. Linus Torvalds,
though not opposing Richard M. Stallman, publicly endorsed the use of high qual-
ity commercial software (Raymond, 1998c) & (Yamagata, 1997). Bruce Perens, who
lead the Debian project (Perens, 2005), also shares a pragmatist view. The Debian
social contract’s basic principle is non-discrimination against any person, group of
people, or field of endeavour, including commercial use. ‘Do nothing to slow down the
widespread distribution and use of open source software’ (Weber, 2004, p.86). The
FSF exclusion of anything proprietary is opposed to the principle of the Debian social
contract to promote growth of Open Source software usage and development.

3http://www.fsf.org/
4http://www.gnu.org
5General Public License

http://www.fsf.org/
http://www.gnu.org

Chapter 2. About Open Source Software 9

2.6 Unique characteristics

Open Source software development differs much from proprietary software devel-
opment. The unique characteristics also lead to a different approach for software
evaluation.

First of all, an Open Source project is created because someone has a certain need for
software that does not yet exist. To quote Eric S. Raymond (1998b) ‘Every good work
of software starts by scratching a developer’s personal itch’. There is a strong personal
motivation for the developer, and any developer that thereafter joins the project, to
work on the software, making it better. This means that they really use the software
they create, which is not always the case with developers creating proprietary soft-
ware. This is also believed to be a reason why Open Source software is often of high
quality (Raymond, 1998b).

There are a number of characteristics that define a project’s chance of success. When
evaluating software in the Open Source market, these unique characteristics have
to be taken into account in order to find the software that is mature enough and
has a good chance of survival. In some ways the chances of a Open Source project’s
existence in the future are more predictable than of proprietary software vendors.
A company can stop its activities at any time, for a large number of reasons. Open
Source software, especially the larger projects, are the work of a many developers and
other community members. Because of the openness, anyone can join in or leave. As
long as there are still people interested in the project, it can continue. Because of the
openness of the software as well as the project, these things are more measurable,
giving a better impression of the software and its future.

In the next chapter the Open Source software evaluation model is discussed.

Chapter 3

Open Source Software
Evaluation

In this chapter, a model is proposed for evaluating Open Source software using an ap-
proach adopted to the unique characteristics of Open Source software. This compar-
ison can be used stand-alone or in conjunction with traditional software evaluation
methods.

The criteria that are used were derived from Open Source literature, among which
are two Open Source maturity models. These sources are discussed in the next sec-
tion.

In order to understand their importance and value, the section 3.2 gives a descrip-
tion of each criterion. The evaluation process, consisting of the selection of a small
number of candidates (the ‘Short list’) and the in depth evaluation of the short listed
candidates, is described in sections 3.3 and 3.4

3.1 The Criteria

The criteria for the Open Source software evaluation model were established using
Open Source literature on the subject of evaluation of software. Because scientific
literature is still somewhat scarce on the subject, web searches were needed to find
the required resources. The web searches were done to find the most prominent
articles on Open Source maturity models, Open Source success factors and Open
Source software evaluation. Two Open Source maturity models were found, as well
as three articles giving advice on selecting Open Source software and one research
article that investigated Open Source success factors.

In order to identify the criteria that give a good general idea of the Open Source
software that needs to be evaluated, all criteria were listed and the terms covering
the same areas were grouped together. The criteria that were mentioned in some way
in at least four out of the six sources were included in this model. The six sources are
listed below.

• Capgemini Expert Letter – Open Source Maturity Model (Duijnhouwer and
Widdows, 2003)

10

Chapter 3. Open Source Software Evaluation 11

• Succeeding with Open Source (Golden, 2005) – This book uses the Navica Open
Source Maturity Model

• Towards A Portfolio of FLOSS Project Success Measures (Crowston et al., 2004)

• How to evaluate Open Source / Free Software (OSS/FS) Programs (Wheeler,
2005)

• Ten Rules for Evaluating Open Source Software (Donham, 2004)

• Vijf adviezen voor selectie van oss-componenten (Nijdam, 2003)

The following two tables list the eight main criteria and how they were mentioned
in each source. A criterion is either listed as mentioned in the article (Y) or listed
as mentioned under a different term (i.e. ‘Maintenance’) or as part of another section
(i.e. ‘In support’).

Table 3.1: Literature on Open Source software evaluation – Criteria I

Criterion Duijnhouwer
et al. 2003

Golden
2005

Crowston
et al. 2004

Wheeler
2005

Donham
2004

Nijdam
2003

Community Y Y Team size
and activ-
ity level

In
support

– Active
groups

Release Activity – Activity
level

Activity
level

Mainten-
ance

– Active
groups

Longevity Age Y – Y Maturity Version
License Y In risk – Y Y Y
Support Y Y – Y Y –
Documentation In ease of

deployment
Y – In

support
Y –

Security Y In risk – Y Y –
Functionality Features in

time
Y – Y Y Y

Integration Y Y – In
function-
ality

In infra-
structure

–

These nine criteria are applicable to almost any type of Open Source software and
give a good general indication of the software.

3.1.1 Goal and Origin

One additional criterion that is an underlying theme in Open Source literature such
as Raymond (1998b), Golden (2005), Weber (2004) and Hars and Ou (2002) has to do
with the motivation of the Open Source software developers. The motivation behind
a certain project can explain the rationale for intended use and how serious the de-
velopers are about the project. Though this criterion does not have the same weight
as the main nine criteria, it is included in this model.

Chapter 3. Open Source Software Evaluation 12

3.2 Description of the criteria

The criteria are each described in the following subsections, giving background infor-
mation and explaining why the criterion is important for software evaluation.

3.2.1 Community

‘One of the most important aspects of open source is the community’ (Golden, 2005,
p.21).

The user community of an open source project consists of the people that use the soft-
ware and participate in some way. One way of participating is by filing bug reports,
which is a report on a problem in the software. This could be something very small,
like a typing error in the text, or something large, like a feature that does not work
properly. Another way is giving feedback on functionality the user would like to be
added. Some users turn into developers over time, and participate in things such as
fixing bugs or adding functionality themselves. They cross the line to the developer
community, which is often a line made very thin by encouraging participation and
making the developer community accessible to anyone who is interested. In some
cases the user and developer community interact fully in the same discussion areas.

The community of an Open Source project is very important because it is the com-
munity that does most of the testing and provides quality feedback. Instead of using
financial resources to put the software through extensive testing and Quality Assur-
ance (QA), like a proprietary vendor will do, the Open Source projects have the com-
munity as a resource. The more people are interested in a project, the more likely it
is that it will be active and keep going. A large and active community says something
about the acceptance of the software. If the software was not good enough to use,
there would not be so many people who cared about its development (Duijnhouwer
and Widdows, 2003).

3.2.2 Release activity

The activity level of a project consists of the community activity and the development
activity. The community was discussed above. The development activity is reflected
in two parts

• Their participation in the community
• The development itself – writing or changing the source code.

The latter activity is reflected mostly in the release activity. All software projects
release new versions after a period of time. The number of releases per period and
their significance, meaning how large the changes are per release (i.e. are there fea-
ture additions or just bug fixes in the release), illustrates the progress made by the
developers. This gives a good indication of how seriously the developers are working
on the software.

Chapter 3. Open Source Software Evaluation 13

The Open Source repositories SourceForge1 and FreshMeat2, where projects can
share files with the public, provide information on activity that could be useful to
evaluate the release activity (Wheeler, 2005).

An Open Source project often has different types of releases:

• Stable releases – the most important type for the end user. This is the version
of the software that is deemed suitable for production use3 with minimal risk of
failure.

• Development versions – These can have different forms, such as ‘beta’, ‘daily
builds’ or CVS (Concurrent Version System) versions, each more up to date with
the latest changes. These versions are usually said to be used ‘at your own risk’
and not meant for production use because there is a higher possibility of errors.

A project which releases new versions of their software usually publishes release
notes along with the download that list all the changes made in the software since
the previous release. Other than the release notes, the project might also have a
roadmap, which usually shows what goals the developers have, how much of these
goals are completed, and when the deadline or estimated delivery date is for each
goal. Checking how the developers keep up with this roadmap shows something
about how well the development team can keep to a schedule.

Though a project might stabilise over time as it is completed, no project should be
completely static. It is important that it is maintained and will remain maintained
in the future (Wheeler, 2005).

3.2.3 Longevity

The longevity of a product is a measure of how long it has been around. It says
something about a project’s stability and chance of survival. A project that is just
starting it usually still full of bugs (Golden, 2005, p.103). The older a project, the less
likely the developers will suddenly stop (Duijnhouwer and Widdows, 2003). But age
is not always a guarantee of the chance of survival. First of all, very old software may
be stuck on old technologies and methods, from which the only escape is to completely
start over. Some software has already successfully gone through such a cycle, which
is a good sign in terms of maturity. One thing that needs to be taken into account
when products are not very young is whether or not there is still an active community
around it.

The age and activity level of project are often related. Young projects often have a
higher activity level than older ones, because once a project has stabilised and is
satisfactory to most users, the discussions are less frequent and releases are smaller,
containing mostly bug and security fixes. This doesn’t mean that the activity should
ever be slim to none. As mentioned before, no project is ever static (Wheeler, 2005).
There’s always something that still needs to be done.

1http://www.sourceforge.net
2http://www.freshmeat.net
3Production use means using the software in a business-critical manner, for example the actual use

of an accounting program in a company

http://www.sourceforge.net
http://www.freshmeat.net

Chapter 3. Open Source Software Evaluation 14

3.2.4 License

As mentioned in the previous chapter, the licenses in the Open Source world reflect
something of the culture. The most important term in this context is ‘opyleft’, in-
troduced by Richard Stallman, where copyright is used to ensure free software and
their derivative works remain free (Weber, 2004, p.48). In essence a ‘copyleft’ license
obligates anyone who redistributes software under that license in any way or form
to also keep the code and any derivative code under the license, thus making any
derivatives Open Source as well.

The most well-known example of a ‘copyleft’ license is the GNU GPL (Weber, 2004,
p.48-49). This is also one of the most used licenses. On SourceForge, a large Open
Source public repository where over 62,000 projects reside, almost 70%4 uses the
GNU GPL as their license. There are some large and well known products that do
not use SourceForge, and some of these have their own license, such as Apache, PHP
and Mozilla (OSI, 2005).

Because ‘copyleft’ in the GNU GPL is very strong, an additional version was made
called the LGPL (Library GPL, also known as ‘Lesser’ GPL) which was less restrictive
in its ‘copyleft’ statements, allowing libraries to be used in other applications without
the need to distribute the source code (Weber, 2004, p. 183).

A ‘non-copyleft’ license that is much heard of is the BSD license. It has been the
subject of much controversy and has had different versions because of that. Com-
ponents that are licensed under the BSD are used in several commercial software
applications, among which are Microsoft products and Mac OS X.(Wikipedia, 2005a)

The license of the software in use can have unwanted consequences depending on the
goal of the use. If the users plans to alter and redistribute the software in some way
but does not want to distribute the source code, a copyleft license is not suitable. In
most cases the user will probably just want to use the software, perhaps alter it to the
environment somewhat, but not sell it. In that case the license itself should at least
be OSI approved and preferably well known. The license should fit with the intended
software use.

3.2.5 Support

There are two types of support for a software product.

• Usage support – the answering of questions on the use of the software
• Failure support or maintenance – the solving of problems in the software

Often the two get mixed at some level because users do not always know the right
way to use the product. Their support request will start as a problem report and later
becomes part of usage support (Golden, 2005, p.124).

The way support is handled is a measure of how seriously the developers work on the
software (Duijnhouwer and Widdows, 2003). One way to check this is to see if there

4 Established using the SourceForge Software Map on April 20, 2005, http://sourceforge.net/
softwaremap/trove_list.php?form_cat=13

http://sourceforge.net/softwaremap/trove_list.php?form_cat=13
http://sourceforge.net/softwaremap/trove_list.php?form_cat=13

Chapter 3. Open Source Software Evaluation 15

is a separate bug tracker5 for the software, and how actively it is being used by both
the developers and the users. When the developers use it but hardly any users seem
to participate, the users may not be pointed in the right direction to report problems.

Aside from community support, larger or more popular projects may have paid sup-
port options. The software is free to use, but the user has the option to get profes-
sional support for a fee, either on a service agreement basis where a subscription fee
is payed for a certain period of time, or a per incident fee for each time the user calls
on support. The project leaders themselves may offer something like this, which is
the case for the very popular Open Source database server MySQL (MySQL, 2005).

There are companies that offer specialised support for certain Open Source software.
This is called third party support. For example, at the Mozilla Support web page, it
can be seen that DecisionOne offers paid support for Mozilla’s popular web browser
FireFox, the e-mail client Thunderbird and the Mozilla Suite (Mozilla, 2005).

The fact that paid support exists for a Open Source product, especially third party
support, is a sign of maturity and a sign the product is taken seriously.

3.2.6 Documentation

There are two main types of documentation (Erenkratz and Taylor, 2003):

• User documentation
• Developer documentation

User documentation contains all documents that describe how to use the system. For
certain applications there can be different levels in the user documentation, corre-
sponding with different user levels and rights. For example, many applications that
have an administrator role, have a separate piece of documentation for administra-
tors. Additionly, there can be various user-contributed tutorials and How-Tos, be it
on the project’s website or elsewhere.

The other main type of documentation, which plays a much larger role in Open Source
software than in proprietary applications, is developer documentation. A voluntary
decentralised distribution of labour could not work without it (Weber, 2004, p.79).
The developer documentation concerns separate documents on how to add or change
the code, as well as documentation within the source code, by way of comments. The
comments usually explain what a section of code does, how to use and change it and
why it works like it does. Though this type of documentation may exist for proprietary
software, it is usually not public. have access to it.

A third type of documentation that is often available for larger server-based appli-
cations is maintainers documentation, which includes the install and upgrade in-
structions. These need to be clear, with the required infrastructure and the steps for
installing the software properly explained.

Documentation is often lagging behind the status of the application, since especially
user documentation is often written only after functionality is created (Scacchi, 2002).

5A bug tracker is an application, often web based, in which the users can report problems with the
software, the developers can assign the bug to someone who will handle it, and the status of the bug
can be maintained. Bugzilla is one such package that is often used for this purpose.

Chapter 3. Open Source Software Evaluation 16

3.2.7 Security

Security in software, especially when discussing Open Source software, has two sides
to it. There are people who believe ‘security by obscurity’ is better, meaning that the
inner workings of the software are hidden by keeping it ‘closed source’. Something
which Open Source obviously does not do. The advocates of ‘Security by Obscurity’
see the openness of Open Source software as a security hazard. Others argue that the
openness of Open Source actually makes it safer because vulnerabilities in the code
are found sooner. Open Source software gives both attackers and defenders great
power over system security (Cowan, 2003; Hoepman and Jacobs, 2005).

Security depends strongly on how much attention the developers give to it. The qual-
ity of the code has much to do with it, and that goes for both proprietary and Open
Source software. If the code of proprietary software is not secure, the vulnerabilities
may still be found. There are plenty of examples where this occurs such as the Mi-
crosoft Windows operating system. The vulnerabilities are often found by ‘hackers’
who try to break the software, sometimes by blunt force or simple trial and error. In
this case a vulnerability might get exploited before the vendor knows about it. The
attack is the first clue in that case. The Open Source software’s vulnerabilities, how-
ever, could be found by one of the developers or users, just by reviewing the code, and
report the problem, so it can be fixed (Payne, 2002).

It is important that the developers take the security of their software seriously and
respond swiftly to any reported vulnerabilities.

3.2.8 Functionality

Though functionality comparison is not specific to Open Source software evaluation
and is properly covered in most traditional software evaluation models, there are
some points to take into consideration. Open Source software often uses the method
‘Release Early and Often’ (Raymond, 1998b). This method enables faster error cor-
rection (Weber, 2004, p.80), by keeping the software up to date as much as possible.
It also encourages people to contribute because they see the result of their work in
the next release much sooner (Raymond, 1998b). However, this often means that the
software is incomplete during the first releases, at least more so than is customary
with proprietary software.

Where vendors of proprietary software will offer full functionality descriptions for
their software, Open Source projects might not have the complete information on the
website (Golden, 2005, p100-101). Just like with documentation, the information on
the website might be lagging behind the actual functionality. Other means of check-
ing the current functionality set might be needed. Fortunately, Open Source software
that is freely available gives the added option of installing the software which en-
ables the full testing of the functionality, an option that is mostly not available with
proprietary software, where at most only limited versions, in terms of functionality
or time, are given freely for trying out the software.

3.2.9 Integration

Duijnhouwer and Widdows (2003) mention three integration criteria. These are most
important for software that is being used in collaboration with other software, and

Chapter 3. Open Source Software Evaluation 17

for those who are planning on adapting the software to their use, such as adding
functionality or customising certain aspects so that it fits better in the organisation’s
environment.

Modularity

Modularity of software means that the software or part of the software is broken into
separate pieces, each with their own function. This type of structure has the following
advantages:

• Modular software is easier to manage (Mockus et al., 2002; Garzarelli, 2002),
and with a base structure that handles the modules well, people can easily add
customised functionality without touching the core software. This way the soft-
ware can still be upgraded without losing any custom code, because the module
works alongside the core software which need not be changed. It also encour-
ages contribution to the software. When someone writes a new module for his
own use he may contribute this module back to the community later so others
can use it too.

• Modular software enables the selection of the needed functionality, leaving out
those that are not necessary for the intended use. This way the software can be
customised without the need for a programmer.

• Use in commercial software – by making software modular, not everything
needs to be given away as Open Source. It is can be used to give away only
parts of software as Open Source while the add-on modules are sold as propri-
etary software (Duijnhouwer and Widdows, 2003), also called the ‘razor’ model
– giving away the razor for free and charging for the blade (Golden, 2005, p.34).

Standards

In the software market more and more open standards emerge to make cooperation
between software easier (Golden, 2005, p.190). If the software vendors use these
standards in their software, it makes it easier to communicate between different
software packages, and to switch between software packages. In some industries
standards are far more important than in others. For some software there may not
even be an applicable standard.

Well known examples of standards are the HTML and XML standards as defined by
the World Wide Web consortium6. The XML standard in particular has grown to a
widespread solution for integration.

The use of current and open standards in Open Source software is a sign of the soft-
ware’s maturity (Duijnhouwer and Widdows, 2003).

Collaboration with other products

Closely connected to standards is the collaboration with other products. As men-
tioned before, not every software type has applicable standards, and sometimes the

6W3c, http://www.w3c.org

http://www.w3c.org

Chapter 3. Open Source Software Evaluation 18

formal standards are not used as much as other formats. For example, the Microsoft
Word document format, the .doc, is probably the most used for exchanging editable
documents. Software such as OpenOffice7 has the ability to import and export to
the .doc format, enabling its users to exchange documents with Microsoft Word users
(Varian and Varian, 2003; OpenOffice.org, 2005).

Another example is the document preparation system LaTeX that has add-ons that
allow the generation of PDF8 versions of scientific documents. This thesis was also
constructed using that system.

Software Requirements Most software is written for a specific Operating Sys-
tem (OS), for example Microsoft Windows or Linux (Wheeler, 2005). Certain types of
software also rely on other software, such as a web server or a database. The require-
ments of the software will state which software and which versions of that software
are compatible. If these requirements are very specific it could lead to problems if
they are incompatible with the organisation’s current environment.

3.2.10 Goal and origin

‘Every good work of software starts by scratching a developer’s personal itch’ Raymond
(1998b). This quote is about the motivation of Open Source software developers.
Open Source projects get started for a number of reasons but the initial motivation
has a clear goal of use for those who started the project.

How a software project started provides information on it’s general usability. If the
project started as a very simple small solution to the developer’s problem, and has
quickly grown into something much larger, the software might not be the most stable
because it was not designed from the start the way it has become. If, however, the
project was planned from the started to be something more substantial, the whole
process is probably more thought through. This can be seen among other things
in its use of modularity and standards, as mentioned above. A project’s history or
other documentation, such as the first release notes or community posts, can give
information on how the project got started and the goal of the developer(s).

3.3 Selection

When evaluating software, a small list of candidates is needed which is evaluated
fully. In order to get this list, a selection is performed on the list of all possible
candidates to get the ‘short list’ (Golden, 2005, p.96-87).

There are five sources that can be used to populate a candidate list (Golden, 2005,
p.94-96):

• Search Open Source Project Portals – for example SourceForge9 and Fresh-
Meat10

7http://www.openoffice.org
8A widely used cross-platform format for non-editable documents, created by Adobe
9http://www.sourceforge.net

10http://www.freshmeat.net

http://www.openoffice.org
http://www.sourceforge.net
http://www.freshmeat.net

Chapter 3. Open Source Software Evaluation 19

• Search the Web – this can also give pages about projects and user opinions
• Ask Open Source Developers
• Post to Mailing Lists
• Ask Vendors

3.3.1 The Selection Method

Anderson (1990) suggests five models for software selection. These are divided by
compensatory and non-compensatory models. The simplest compensatory model is
the Linear Weighted Attribute Model. In this model a number of attributes are used
and each package gets a performance rating for each attribute. Weights are assigned
to the attributes, which defines the compensatory nature of this model. The final
score of each package is defined by the equation:

Qi =
m∑

j=1

WjAij

Where Qi is the score of package i, Wj is the weight assigned to criterion j and Aij is
the score of package i for criterion j. Thus the final score for a package is the sum of
the weighted performance scores.

This method is suitable both for a quick selection and the complete evaluation pro-
cess.

One of the other models is Elimination By Aspects (EBA). This model ranks the
attributes by importance in descending order, and sets a minimum value for each
attribute. Packages that do not conform to the minimum of the first attribute are
eliminated, the remainder is tested against the second attribute’s minimum, and so
on.

Using the EBA model can save some time in the selection process. For example, a
project that is clearly incomplete, or has not released an update in a long time, can
easily be eliminated using EBA. However, in this step of the model the goal is to es-
tablish a short list for the in depth evaluation. A ranked list would be useful for this.
In order to save time using elimination and still have a ranked list of suitable candi-
dates as a result, the two methods are combined such that elimination is performed
first, using one or more criteria, and the remainder of the candidates is ranked using
the Linear Weighted Attribute Model.

3.3.2 The Criteria

In order to use these models a number of criteria are needed that give a good impres-
sion of the overall project and are reasonably easy to measure. The criteria suitable
for this process are:

• Functionality
• Community
• Release activity
• Longevity

Chapter 3. Open Source Software Evaluation 20

The first criterion is functionality. Though this criterion was not mentioned as the
first criterion for Open Source evaluation, this is a criterion needed in the selection
process in order to screen out any software that is clearly incomplete or does not
fulfil the functional requirements. The other criteria are the first three of the full
evaluation model and give a good impression of the level of activity of a project.

Each of these criteria is checked by visiting the project’s website. The information
needed may have to be searched for, in other cases it is in an obvious place. The more
visible the information is, the better. If a website is hard to navigate it will keep
others away as well, which can cause lower activity.

When combining EBA with the Linear Weighted Attribute Model, a minimum re-
quirement is needed for the criteria used in the EBA step. Two of the criteria are
well applicable for this process: Functionality and Release Activity. For functionality
a set of minimum functional requirements can be used to eliminate the incomplete
products. The release activity can have a minimum period since the last release, so
that outdated projects or projects that have ceased development can be eliminated.

Functionality

The software’s functionality can be found:

• In a feature list on the website (Golden, 2005, p.100)
• In an online demo of the software for web applications

If these two are not available or sufficient to determine the available functionality,
the software can be installed to determine the functionality. This takes more time
and is therefore better left to the evaluation step though.

Because of the Open Source ‘Release Early and Often’(Raymond, 1998b) method there
may be projects where the feature set is incomplete. Compare the functionality with
the basic feature set of the software type or the functional requirements. If there are
too many missing features, the software should not be taken into consideration, even
if the features are said to be implemented in the near future. Base the selection on
what is available instead of what is promised (Duijnhouwer and Widdows, 2003).

Community

As mentioned, community is a very important part of an Open Source project. The
community’s activity is expressed mostly through discussions in forums or mailing
lists.

First thing to observe is the communities visibility. Is it clearly present on the
projects website, is the visitor enticed to get into the community discussions? The
better able one is to find the community and the more the visitor is invited to get
involved, the more potential the community has for growth.

The activity level is observable by number of posts, the range of dates of the latest
posts, etc. (Bergquist and Ljungberg, 2001). Most forums show the number of posts
and the date of the latest post in each sub forum. In Appendix B two screenshots are
given, one is an example of an active community, the other of a much less active one.
Find the sub forum that deals with questions and/or problems (or the most general

Chapter 3. Open Source Software Evaluation 21

one if there are more in that category), and check the dates of the top posts. The
example where the activity is rather low shows that within the first 15 topics the
date goes back six months, while the first 15 topics in the active community’s sub
forum go back only about 15 hours.

Keep in mind when evaluating the activity level, that a good community provides an-
swers to questions, and feedback to suggestions, etcetera. This means that the higher
number of posts in a topic, the better. If a question forum is filled with unanswered
posts, so that the number of posts is close to the number of topics, it is not a very
valuable community (Golden, 2005, p.140) & (Wheeler, 2005).

Release activity

Though community activity is very important, on the surface the developers’ activity
in the community is not always clearly visible. To quickly asses whether the develop-
ers are active, the releases of the software are investigated.

Release activity is measured by checking the releases made per period of time. This
can usually be found in the download area or in the change log or release notes (Cha-
van, 2005), a page or text file that explains what has changed in a release since the
last version. Sometimes change logs only list the last release, sometimes they list all
the releases in descending order.

The change log also gives information that can help determine the significance of a
release: How much has changed? Has functionality been added? The Open Source
philosophy of ‘Release Early & Often’ (Raymond, 1998b) sometimes leads to very
small changes between releases, where the frequency may be high, but development
is not really that fast.

Longevity

Longevity is checked using the age (Golden, 2005, p.103), established using the date
of the first release of the software. This can usually be found in the change log or
the history of the project. When a software project stabilises over time the activity in
terms of releases and community may eventually get lower. This happens in projects
that are at least five to ten years old and have completed most functionality. The
activity then is limited to bug fixing and perhaps a few ideas here and there about
new or changed functionality (Wheeler, 2005). The age of a project can compensate
for this decrease of activity. Giving age a significantly lower weight than the other
criteria is recommended, because it is merely compensating for a small decrease in
activity and is not a guarantee of stability.

3.4 Evaluation

The selection step should provide a small number of candidates to evaluate further.
The evaluation step is done by evaluating each criterion for the shortlisted systems.
Each candidate gets a relative score for each criterion. The way this score can be
established is described per criterion in this section.

Chapter 3. Open Source Software Evaluation 22

The final result is calculated as using the Linear Weighted Attribute Model11 (An-
derson, 1990). An example of the weights that can be used can be found in Chapter
4.

3.4.1 Community

The community is the driving force behind an Open Source project. The community
defines much of the activity and reflects in other areas such as support and documen-
tation.

The community is mostly visible in terms of (Duijnhouwer and Widdows, 2003; Crow-
ston et al., 2004; Nijdam, 2003; Golden, 2005):

• Posts – number of posts per period, number of topics.

• Users – number of users, and the user/developer ratio in terms of the number
of people and number of posts. If only users post, the developers are not as
involved as they should be.

• Response time – if and how soon user questions are answered.

• Quality – the quality of posts and replies – are questions answered to the point,
are the answers very short or more elaborate? Is there much discussion about
changes and feature additions?

• Friendliness – how friendly the community is towards each other, especially to
newcomers, also known as ‘newbies’. The community should have an open feel
to it, encouraging people to participate.

The depth of conversations as mentioned in the fourth item gives a good impression
of how involved the community is with the ongoing development of the project. Much
discussion about the software, in a friendly and constructive manner, encourages the
developers to enhance the software further.

Another thing to check is whether or not all posts are kept or archived. When old
posts in a community are being ‘cleaned up’, this can give considerable data loss that
has important community value. Try to see if the community posts seem complete
compared to the age of the project.

The community activity is also reflected in other areas such as support and documen-
tation, but these are measured in the other criteria.

3.4.2 Release Activity

Release activity reflects the development progress. This is measured using the re-
lease frequency and significance per release.

Check the project’s change logs to check (Chavan, 2005):

• The number of releases made per period of time – most projects will make sev-
eral releases in a year, sometimes once or twice a month. A year is usually a
good period to count the releases.

11See section 3.3.1 for the formula

Chapter 3. Open Source Software Evaluation 23

• The significance of each release – the change log or release notes explain what
has changed in the release. These descriptions are sometimes very elaborate,
where every little detail is described, and sometimes very short, where just
large changes are listed. A good distinction to make is whether the release only
contains bug fixes or also contains enhancements to features or completely new
features.

The project might also have a public roadmap. Check if any deadlines have expired
and keep an eye on the roadmap as the project progresses to see if they keep to it.

If the project is listed on SourceForge and/or FreshMeat, some of the release activity
information is available there.

3.4.3 Longevity

Longevity is a measurement of a project’s stability.

Longevity is checked using (Golden, 2005, p.105) & (Nijdam, 2003):

• age of the product – the date of the first release

• version number – a 0.x number usually means the developers do not think the
software complete or ready for production use at this time.

• if the project is very old it is worthwhile to check if it has gone through a cycle
of redesign, or it is currently having problems with new technology.

Keep in mind that the version number doesn’t always tell the whole story. Some
projects might go from 1.0 to 2.0 with the same amount of change that another project
has to go from 1.0 to 1.1. The fast progression of the version number might be used
to create a false sense of progress. Other software products are still in a 0.x version,
even after a long time, and after they are proved suitable for production use (Nijdam,
2003).

3.4.4 License

Check whether the license is an OSI approved license or, if they use a different li-
cense, read it carefully. If it uses one of the public licenses, the better known the
license, the more can be found on its use and potential issues (Wheeler, 2005). Check
if the license fits with the intended use.

3.4.5 Support

Support for Open Source software is in most cases handled by the community. The
community’s support areas are invaluable resources for solving problems (Golden,
2005, p.130). Mature products often have paid support options as well if more help
or the security of a support contract is required.

Chapter 3. Open Source Software Evaluation 24

Community support

The usage support is usually found in the community. Things to look for (Golden,
2005, p.137-141):

• Do they have a separate forum or group for asking usage related questions,
• How active is this forum,
• Are developers participating
• Are questions answered adequately

Check if responses to questions are to the point and if the responders are trying to
be friendly and helpful. In the process of evaluating software, the evaluator will
probably be able to post a question. Try to keep to the etiquette, where the most im-
portant rule is to search for a possible answer posting a question and to given enough
relevant information for others to reproduce the problem (Golden, 2005, p.104) &
(Wheeler, 2005).

The way the community is organised influences the community support’s effectivity.
A large project should have multiple areas for each part of the project, but the ar-
eas should not be spread to thin. That way the developers that are responsible for a
certain part of the project are able to focus on the relevant area without getting over-
whelmed with a large amount of other questions. If the areas are too specialised and
little activity takes place in each, not enough people will show interest and questions
are more likely to remain unanswered.

Failure support within the project is often handled by a bug tracker where problems
are reported and tracked. Check how many of the developers are involved in this.
Statistical studies have shown that in successful projects the number of developers
that fix bugs in Open Source software is usually much higher than the number of
developers creating new code (Mockus et al., 2000).

Paid support

Paid support might be available from the project team itself (Golden, 2005, p.135).
Check the details and see if there are any people who have given their opinion about
the quality of this support.

One of the strong signs of maturity of Open Source software is the availability of third
party support: companies that offer commercial support services for Open Source
products (Duijnhouwer and Widdows, 2003). Check if any third party support is
available and if the form of support they offer is useful. Some companies offer service
contracts, others offer only phone support on a per-incident basis.

Check for paid support options whether they will be used or not (Duijnhouwer and
Widdows, 2003). How the situation may be during actual use of the software is not
always clear and it can give a better impression of the maturity of the software.

3.4.6 Documentation

Documentation involves any text made available to help with the installation, use
and development the software. User documentation and developer documentation

Chapter 3. Open Source Software Evaluation 25

are the two main areas. A third area is maintainer’s documentation – the install and
upgrade instructions. See if these are available either on the website and/or packaged
with the software and if these documents are clear.

User Documentation

Check for the existence of user documentation on the project’s site. The site will in
most cases have a separate section for documentation. The minimum that is usually
available are instructions on the installation of the software. Additional documenta-
tion may include descriptions of the main features, ‘How-Tos’ and/or tutorials with
instructions (Duijnhouwer and Widdows, 2003).

If the software has different access levels, such as administrator and normal user, see
if this distinction is made in the documentation as well.

The documentation for larger projects is often handled by a documentation team. See
if there is a discussion area about the documentation and how active they are.

Developer Documentation

The developer documentation consists of

• documents that describe the development process and how to participate

• comments in the source code that explain what the file or portion of code does
and why

Check the available developer documents if they are clear on how to develop the
software (Wheeler, 2005) and how to join the developer community.

Check the code whether a file starts with a short description of the file’s use, and
if there are any comments made throughout the file and how clear they explain the
how and why of the file’s operations, and whether the comments match the workings
of the code.

A programmer or at least someone with some experience in programming will be
better able to evaluate whether this documentation is set up well, especially the com-
ments in the source code. It is a good idea to let someone with experience take a look
at this documentation (Wheeler, 2005).

3.4.7 Security

There are various security advisories to check for bugs in all types of software that
make it vulnerable to attacks. A couple of well known advisories are http://www.
securityfocus.com and http://www.secunia.com . Check these sites for vul-
nerabilities in the software and see how soon they were fixed in a new version. Keep
in mind that more popular software will have a higher chance of having vulnerability
reports, so the mere lack of reports is no proof of its security.

On the project’s website it can be seen, for instance in the community or in release
notes, how serious the project is about security.

http://www.securityfocus.com
http://www.securityfocus.com
http://www.secunia.com

Chapter 3. Open Source Software Evaluation 26

3.4.8 Functionality

One problem with Open Source projects is that the documentation is not always up
to date with the latest software. Look beyond the feature list on the website to find
out what features the software has. Resources for this are (Golden, 2005, p.99-102):
querying the developers and asking the user community

Eventually the software itself should be investigated. If it is a web-based application,
an online demo might be available, though installing it on a test environment could
be useful because it also gives insight on how well the software installs.

A list of functional requirements for the goal of use of the software can be used to
check if the needed functionality is available. If such a list is not given, there may be
one available from technology analyst organisations (Golden, 2005, p.93). It is wise to
make a distinction in the list between features that are absolutely necessary, where
the absence would lead to elimination, and those that would be a plus, which results
in a higher score. If there is something missing there is always the option to built it
or have it built.

When comparing functionality, those features that are part of the functional require-
ments should take priority, but additional features may prove useful later. The fea-
tures used or requested by the users in the future is not really predictable. While
evaluating the software, features may be found in some of the candidates that are
very useful for the goal. These can be added to the functional requirements.

Part of the functionality is localisation. The languages in which the interface and
documentation are translated are a sign of the global interest taken in the software.

3.4.9 Integration

Modularity

Check the documentation and code base for evidence of a modular structure. The
development documentation describes how to add modules if the software is modular.

Standards

Software projects that use standards usually include information about this in their
feature list or documentation. Check whether the standards implementation is com-
plete or still underway.

Collaboration with other products

If the software can work with relevant other product this can usually be found in the
feature list or documentation.

Software Requirements Check the software requirements in the documentation
of the software. There is usually a section on this in the installation document. Check
whether these requirements can be met in the current environment (Wheeler, 2005),
and how flexible they are in terms of the versions of the required software.

Chapter 3. Open Source Software Evaluation 27

Compatibility with new versions of the required software might be an issue. Check
how fast the software catches up with changes in the required software.

3.4.10 Goal and Origin

Something about the history of the project can often be found in the documentation
or on a special page on the website. See if the goal of the software and the reason it
got started is compatible with the intended use.

3.5 Model overview

The criteria and the evaluation process were described in the previous sections. To
conclude this chapter, an overview of the model is given in two tables. Table 3.2
gives the background information on the criteria and Table 3.3 gives the selection
and evaluation process for each criterion.

Table 3.2: Criteria Overview

Criterion Background
Community The driving force and main resource of an Open

Source project.
Release activity Shows development activity and progress.
Longevity Indication of stability and chance of survival.
License Public or specialised? GNU GPL is a well known pub-

lic copyleft license. Copyleft ensures code and deriva-
tives stay under that license

Support Community and paid support, answering questions
and failure support.

Documentation User manuals and tutorials – developer documenta-
tion about code structure and coding guidelines.

Security Openness vs. obscurity. Security needs to be taken
seriously.

Functionality Release early and often can lead to incomplete prod-
ucts. Feature information not always clear.

Integration Modularity, standards and collaboration with other
products.

Goal and origin Does the project team’s goal fit with the intended use?
Gives an indication of how serious the developers are
about the project.

Chapter 3. Open Source Software Evaluation 28

Table 3.3: Evaluation Model Overview

Criterion Selection Evaluation
Community Number of posts

and users.
Number of posts, total and per
period, number of users and de-
velopers, speed and quality of
replies, community contributions
(code, documentation, etc).

Release activity Release
count and
significance.

Releases per period and signifi-
cance, roadmap.

Longevity Date since first
release.

Age, version, gone through redesign
cycles? Version number is no
guarantee.

License Public license i.e. GNU GPL? Does
the license fit with goal of use?

Support Community activity and quality,
paid options from vendor and/or
third party?

Documentation User and developer documentation.
Quality? Is it up to date?

Security Security advisories and bugtracker.
Response time to security holes?

Functionality Check with
minimal re-
quirements
using feature
list, querying
developers and
community,
demo’s for web
based apps.

Check feature list, ask develop-
ers, online demo, test by installing.
Compare with functional require-
ments. Check richness of features,
additional features that may be
useful, these give an indication of
target audience and enthusiasm of
developers.

Integration Check the code structure and docu-
mentation for modularity. Are rele-
vant standards implemented? Does
it work with relevant products, how
flexible is it with required software
versions?

Goal and origin Check documentation for history
and roadmap.

Chapter 4

Case Study: Course Management
Systems

Now that the model for Open Source software evaluation has been defined, it needs
to be tested on real software systems. Course Management Systems were chosen as
the target software category, because this relatively new area of software where Open
Source alternatives are now starting to break through, is not explored fully at this
time, and it concerns a reasonably large sized piece of software. The target users for
these systems are educational institutions, including universities. These institutions
make long term investments in this type of software which deserves a full evaluation
process.

First, an introduction will be given on these systems. Then the model is applied to a
candidate list to find the highest scoring systems, and these results are compared to
their real life performance.

4.1 Introduction

Many universities, including Tilburg University, have been using a Course Manage-
ment System (CMS) for a few years now. A Course Management System is a web
based application through which students and teachers can interact. Course docu-
ments such as presentation sheets and assignments are made available to the stu-
dents by the teacher and students can work on assignments in groups and take online
tests.

There is no agreed upon definition or even one single term for CMSs. In the United
Kingdom they are often called Virtual Learning Environments (VLEs). Other terms
used are Managed Learning Environment (MLE), Learning Management System
(LMS) and Learning Support System (LSS) (Wikipedia, 2005b).

In this case study, Open Source Course Management Systems are investigated. In
software evaluation there usually is a list of functional requirements. However, be-
cause there is no clear definition of a CMS and its most common properties, and
there is no outside functional requirements list available in the context of this thesis,
some assumptions are needed. A list of functional requirements was created using

29

Chapter 4. Case Study: Course Management Systems 30

the main features from an online CMS overview: Edutools (2005a) and a report com-
paring a large number of Open Source CMSs: COL (2003). This list can be found in
Appendix C.

In the Netherlands the universities mainly use the proprietary CMS Blackboard1

(Surf, 2005a). This system is the current market leader along with another propri-
etary system called WebCT 2. In Appendix D the use of CMSs in the Netherlands is
given in detail.

The CMS Open Source market is relatively young. There are a few promising candi-
dates and these are getting more attention.

A search is performed to make a list of candidates to perform the selection process
on. After the selection process the top systems are evaluated. This was restricted to
two systems because of time constraints.

The full candidate list was formed by investigating other comparison articles and do-
ing web searches. Two resources that gave extensive lists of candidates are the Com-
monwealth of Learning’s LMS Open Source Report of 2003 (COL, 2003) and WCET’s
Edutools.info website, which provides a CMS comparison tool, using detailed descrip-
tions of functionality and background information of proprietary as well as Open
Source CMSs (Edutools, 2005a). The candidate list that was constructed using these
two sources has 36 candidates. The complete list with overview of the sources and
links to the project’s website is included in Appendix E.

4.2 Selection

Because there are some candidates that are very limited in terms of completeness
and activity, Elimination By Aspects (EBA) is performed to eliminate that part of
the candidates before ranking the remaining candidates by score using the Linear
Weighted Attribute Model (Anderson, 1990).

4.2.1 Elimination By Aspects

The first step uses Elimination By Aspects (EBA) to eliminate those candidates that
do not conform to a minimum standard. Two criteria are applied in the EBA step,
using the following minimum values:

• Functionality: The software needs to have the basic functionality to conform
to the functional requirements that were defined.

• Release Activity: The last stable release needs to be no older than two years.

Furthermore, any projects that have an announcement of discontinuation on their
website are eliminated. Some of the software turned out not to be Open Source.
These candidates were also eliminated.

The website is checked, if it is not available, a web search for a possible new address
could lead to the current site. Information on the last release and the description of

1http://www.blackboard.com/
2http://www.webct.com

http://www.blackboard.com/
http://www.webct.com

Chapter 4. Case Study: Course Management Systems 31

the features are checked. If the available information does not convince that it does
not meet the requirements the project will not be eliminated, so that only candidates
that do not meet the requirements for certain are excluded.

The elimination step reduced the list from 36 to 19 candidates that will be evaluated
in the scoring step of the selection process. The details can be found in Appendix F.

4.2.2 Ranking

Using the result from the elimination, the remaining 19 candidates are scored using
the Linear Weighted Attribute Model. Relative scores from 1 to 10 are assigned for
each criterion. Information such as dates and numbers, as well as remarks relevant
to the determined score are summarised in tables in Appendix F.

Weights

As discussed before, age is a compensation for relatively small differences in activity
levels. Therefore, the longevity weight should be significantly lower than the weight
of the other criteria.

The weights can be set according to the situation and preference of the evaluating
party. The optimal distribution of the weights was not investigated in the context of
this thesis. The choice was made to distribute the weights in such a manner that the
total maximum score, given that scores could range from 1 to 10, would be 1000, so
the sum of the weights should be 100. Age was given a weight of 10 and the remaining
90 points were distributed evenly by level of importance, resulting in the following
weight distribution:

• Functionality – 35
• Community – 30
• Release Activity – 25
• Longevity – 10

Because of the manner in which this weight distribution was chosen, the results will
be tested by checking the final results with different weight distributions to see if the
results remain consistent.

There is certainly room for improvement in this process. Using statistical analysis
could lead to more precise conclusions. However, the results established here gives a
reasonably trustworthy indication.

The results for each criterion are presented in a table in Appendix F. Below is a short
description of the process.

Functionality

In order to check the functionality quickly for each candidate, the functionality re-
quirements are compared to the feature lists and if available the online demo. This
criterion is hard to measure, so the score is harder to determine. In this case a coarser

Chapter 4. Case Study: Course Management Systems 32

scale, using the values 2, 4, 6, 8 or 10 for the score, is used. Determining these scores
is a rather intuitive process, left to the user’s situation.

The demos were used where possible, but unfortunately, not all projects had an on-
line demo available. The feature lists are not always accurate, so care was taken to
try and determine how well they represented the actual state of the software. The
functionality will of course be checked further for the shortlisted candidates in the
evaluation.

In this case, some help came from the edutools website, which gives detailed compar-
isons of features by giving a description of the feature possibilities for each product.
Twelve of the nineteen CMSs can be found on this site.3 Unfortunately, some of the
information is rather dated – for example, the ILIAS version presented here is almost
two years old while the last release is just a month old – so for some products, the
recent changes have to be taken into account compared to this information. For the
remainder of the CMSs the resources of their own websites need to be used.

Community

For community scoring, the accessibility is the first point to evaluate. Then the num-
ber of topics and/or posts in the community message boards, forums or mailing lists
are counted. This can be challenging at times because not all message services pro-
vide total counts, and some may only provide the total number of messages, but not
the number of topics, and vice versa.

The activity between the projects was compared and scored from 1 to 10, assigning
identical scores for activity that was very close together. Because there were not
always totals available, it could not be used as a direct measure.

Release activity

The release activity was scored by using three values

• latest release date
• total number of releases in 2004 and 2005
• weight of the release – a number from 1 to 10 indicating the average significance

of the releases

The following equation was used to determine the score. The relative score of the age
of the last release, 10 being the product with the most recent last release and 1 being
the product with the oldest:

S1i = 10× (1− (Di/ max D))

Where Di is the number of days since the last release of candidate i and max D is the
maximum value of number of days since the last release over all candidates.

The relative score of the number of releases multiplied by the release weight:

S2i = 10× ((Ri ×Wi)/ max (R×W))
3The side-by-side comparison of these twelve can be found here http://www.edutools.info/

course/compare/compare.jsp?product=215,255,239,218,152,217,234,74,165,203,183,
162

http://www.edutools.info/course/compare/compare.jsp?product=215,255,239,218,152,217,234,74,165,203,183,162
http://www.edutools.info/course/compare/compare.jsp?product=215,255,239,218,152,217,234,74,165,203,183,162
http://www.edutools.info/course/compare/compare.jsp?product=215,255,239,218,152,217,234,74,165,203,183,162

Chapter 4. Case Study: Course Management Systems 33

Where Ri is the number of releases for package i, Wi is the average weight per re-
lease for package i and max (R×W) is the maximum of all values Ri × Wi over all
candidates.

Total Score Ti = (S1i + (3× S2i))/4

The S2i, the number of releases and their weight is given a higher importance than
S1i, age since the last release. A project could release a new version tomorrow that
could lead to large shifts in those numbers, whereas the number of releases in a
recent period combined with their weight, gives a better impression of the overall
progress. Therefore the latter makes up 3/4 of the score.

This method is not validated statistically and could be improved upon. One problem
with this equation is that there is no compensation for the correlation between num-
ber of releases and last release date that inevitably exists when the last release was
for example in early 2004, and thus the number of releases will be low as well.

Longevity

As compensation for decreasing activity over time both in releases and the commu-
nity, the age of a project is measured. For this the inverse of the last release formula
was used, so instead of the smaller number of days scoring higher, the larger number
of days scores higher:

Si = 10 ∗ (Di/ max D)

Where Di is the number of days since the first release of candidate i and max D is the
maximum value of number of days since the first release over all candidates.

4.2.3 Scoring Result

The final result for each candidate is calculated using the Linear Weighted Attribute
Model equation:

Qi =
m∑

j=1

WiAij (Anderson, 1990)

The result of the scoring step leads to a list of total scores ranging from 960 to 135
out of a possible 1000-100. The top five candidates are:

• Moodle – 960
• ATutor – 800
• Claroline – 775
• ILIAS – 770
• Dokeos – 675

The full results are given in Appendix F.

When looking at a chart of the scores per criterion in Appendix F.7, it can be seen
that the criteria tend to show the same decrease down the list as the total scores,
only age is more varying across the ranked list. As explained before age is only a
small compensation for a decrease in activity in the other criteria. Because the three
most important criteria show mostly the same line of decrease as the total score,

Chapter 4. Case Study: Course Management Systems 34

changing the weights of these criteria did not cause any significant differences in the
end result. The top five in almost all cases stayed the way it is.

One note on Dokeos is in order. Dokeos is a project that has split off from Claroline
in 2004, a development team is still working on each project. The software is still
very close together. Dokeos scored lower than Claroline understandably on release
activity and age.

The sixth candidate on the list scored 525 points. A significant difference with the
number five, if the remarks concerning Claroline and Dokeos are taken into account.
Therefore this list of five candidates would be a good list for the evaluation step.
However, due to the limited time available for this research project, the evaluation
step is performed on the top two candidates: Moodle and ATutor.

4.3 Evaluation

The selection step resulted in a list of candidates ranked by the selection score. The
top two will now be evaluated: Moodle and ATutor.

Scores ranging from 1 to 10 are given on all criteria for each system. One is given
when it does not fulfil any of the wanted characteristics of the criterion, and ten when
that the software ideally complies with the criterion.

Before performing the evaluation some general information on both Moodle and ATu-
tor will be given.

4.3.1 Introduction

Moodle

Moodle is the creation of Martin Dougiamas, PhD student at Curtin University,
Perth, Australia. He was a WebCT administrator for Curtin University. Using this
hands-on experience, he set up his PhD project, entitled:

‘The use of Open Source software to support a social constructionist epistemology of
teaching and learning within Internet-based communities of reflective inquiry’

Martin has co-authored several papers on the subject, together with Peter C. Taylor,
Associate Professor at Curtin University (Dougiamas and Taylor, 2003).

This research project started in 2000. The first public release of Moodle, version 1.0,
was released on August 20, 2002. In 2003 the company moodle.com was launched,
offering professional support and management of Moodle installations. Currently, the
project is at version 1.5, with a large number of features added since the first release.
The project has grown substantially, with many users and developers participating
in the community at Moodle.org (Moodle, 2005a).

Philosophy Moodle is based on the ‘social constructionist pedagogy’. The page
explaining the philosophy in the Moodle Documentation can be found in Appendix G.

This philosophy is centred around 4 terms (Moodle, 2005h):

Chapter 4. Case Study: Course Management Systems 35

• Constructivism – People actively construct new knowledge as they interact with
their environment.

• Constructionism – Learning is particularly effective when constructing some-
thing for others to experience.

• Social Constructivism – Extending constructivism into a social group construct-
ing things for one another

• Connected and Separate – Separate behaviour occurs when trying to remain
‘objective’ and ‘factual’. Connected behaviour occurs when accepting subjectiv-
ity, trying to listen and ask questions to try and understand the other point of
view. Constructed behaviour occurs when a person is sensitive to both of these
approaches.

Moodle’s infrastructure is supportive of this philosophy in particular but it does not
force it upon the user (Moodle, 2005h).

ATutor

ATutor is an Open Source Web-based Learning Content Management System (LCMS)
designed with accessibility and adaptability in mind. The team consists of twelve
people. The project originated in Canada and has a few Canadian sponsors. ATu-
tor complies with the W3C WCAG 1.0 accessibility specifications at the AA+ level,
allowing access to all potential learners, instructors, and administrators, including
those with disabilities who may be accessing the system using assistive technologies
(ATutor, 2005c) & (ATutor, 2005d).

A six point model that draws on popular understanding of learning and the structure
of knowledge is their starting point for developing an intelligent learning environ-
ment that adapts to all who use it. The full philosophy is included in Appendix H.
(ATutor, 2005d)

1. Visual learners like to see or imagine things
2. Verbal learners like to hear or verbalize things
3. Kinesthetic learners like to do or experience things
4. Global learners structure information in webs
5. Hierarchical learners structure information in trees
6. Sequential learners structure information in chains

4.3.2 Evaluation Result

The evaluation as described in the model in Chapter 3 was applied to evaluate these
two candidates. For each criterion a detailed description of the steps followed and the
observations made can be found in Appendix I.

The following is a summary of the evaluation results.

Chapter 4. Case Study: Course Management Systems 36

Community

Moodle shows very high activity levels. Over 14000 topics in the most active course,
26–28 replies a day in the most active forum of that course. ATutor is by far not
that active with 1140 topics and 3–4 replies a day. Moodle’s discussions are often
about the functionality of the product, actively discussing possibilities for additions
and changes. ATutor’s post consist mainly of short support questions and answers.

Release Activity

Moodle has a higher release activity than ATutor: 26 vs 14 releases in total.

Longevity

ATutor and Moodle both started in 2002, with version 1.0 released in the second half
of that year.

New Technology Both products are based on PHP and MySQL, each of which
has released significantly changed versions last year. Moodle appears to have no
problems with the new versions, ATutor is still working on some issues.

License

Both products are licensed under the GNU GPL

Support

Community support for Moodle is more active than for ATutor. Quality level of the
help offered is also higher. Paid support options are available for both but Moodle’s
options seem more elaborate.

Documentation

Both products have a documentation section which is reasonably complete. Moodle,
however, has a number of elaborate user-contributed manuals and tutorials. Devel-
oper documentation is also available for both.

Security

Moodle seems to be more involved in security with an open bug tracker and fast
responses to vulnerabilities.

Chapter 4. Case Study: Course Management Systems 37

Functionality

Both products have the basic functionality that were named in the requirements.
However, Moodle has more additional features and all features seem much richer
than ATutor’s, with more options for customisation. Moodle’s modular structure al-
lows for more user-contributed additions.

Integration

Standards SCORM is a package of standards used with CMSs (Edutools, 2005b).
Both systems support SCORM.

Modularity Moodle has a modular structure for activities, languages and themes.
ATutor does not show signs of a modular structure.

Compatibility with other applications Moodle has more options for working
with other applications, such as authentication protocols, than ATutor.

In terms of Software Requirements, Moodle is more flexible with the versions of
the required software it works with than ATutor. Moodle’s developer documentation
has flexibility listed as a requirement: ‘Moodle should run on the widest variety of
platforms’ (Moodle, 2005c).

Goal and Origin

Moodle’s origin is the PhD project Martin Dougiamas started and has a clear goal,
which fits with university institution-wide use of the CMS. ATutor’s origin is unclear,
the only goal that is clearly stated is the compliance to accessibility standards.

4.3.3 Results

The evaluation shows a very conclusive result. The scores are shown in Table 4.1.
In every respect Moodle scores higher than ATutor, except in License where they
achieve equal scores. The weights used are also included in the table.

Chapter 4. Case Study: Course Management Systems 38

Table 4.1: CMS Evaluation Results

Criterion Weight Moodle ATutor
Community 10 9 5
Release Activity 8 10 6
Longevity 6 10 9
License 4 10 10
Support 6 10 5
Documentation 6 9 7
Security 4 9 4
Functionality 8 9 6
Integration 6 9 5
Goal and Origin 2 10 5
Weighted Total 9.4 6.1

The weights can be adjusted according to preference and the relevance for the type
of software. For example, integration gets a reasonably high weight here because
this type of software has integration possibilities in a number of areas, such as the
standard package SCORM and authentication protocols. In more complex software,
documentation might get a higher weight. Keep in mind the general importance
of certain criteria, such as community and release activity, when adjusting these
weights.

Because the sum of these weights does not lead to a nice round number, the score was
calculated using the average weighted total score to give a number from 1 to 10. The
weighted average is not significantly different from the unweighted average, because
the results are reasonably even.

Overall it is clear that Moodle is complying much more to the requirements of a good
Open Source project that are set in this model than ATutor does. Moodle certainly
had a very open and collaborative feel to it from the moment the project was first
encountered during this research project, which is what is needed to run a successful
Open Source project.

4.4 Case Study: Conclusion

In the previous chapter, a model was defined to use for Open Source software evalu-
ation. In this chapter, the case study that was performed using that model was de-
scribed. The goal of the case study was to see if the model is useable for real software
and if the results it returned are consistent with real performance of the software.

The model was used to evaluate Course Management Systems, starting with 36 can-
didates, and finally evaluating two systems. These two showed significant differences
which illustrated the importance of the community which’ activity defines the value
of other criteria like documentation and support. The model was well applicable to
these systems, the needed values could be found using the guidelines of the model.

Chapter 4. Case Study: Course Management Systems 39

4.4.1 Validity of Results

Now that the results from the evaluation of the CMSs are known, it is necessary to
check whether these results are reflected in the performance of these systems in real
life. There are a number of sources that can be used for this, including other compar-
ison reports, evaluations and implementations done by educational institutions, and
any publicity the systems have received.

The Top 5

The top 5 systems were investigated for real life performance. Dokeos and Claroline
were investigated together because the systems currently do not differ enough to
warrant separate results. Table 4.2 gives a summary of the findings. The full remarks
can be found in Appendix J.

Table 4.2: Real Life Performance of Top 5 systems

Source Dokeos
Claroline

ILIAS ATutor Moodle

COL (2003) – Recommended
second

Recommended
First

Shortlisted

Clements (2003) Shortlisted – Shortlisted Recommended
VUB (2004) Chosen and

implemented
– – Shortlisted

Ose.Nz.Org (2004) – Shortlisted Shortlisted Chosen and
implemented

UniKöln (2005) – Implemented – –

The investigation of the validity shows that the results of the selection and evaluation
performed in the case study provides an accurate overview of the leading systems.

Other systems

The top five systems appear to get the most coverage in the resources that were found.
A couple of other systems are also mentioned often:

• LON-CAPA
• Bodington Commons
• DotLRN (or .LRN)
• Sakai

These four systems were the ones that followed the top five mentioned above in the
ranked list of the selection results, so it would appear that the model gives an accu-
rate representation of the worthwhile systems.

Note on Sakai Sakai is a project that has just started. It is run by a joined effort
between several universities, and is the continuation of three other projects (Sakai,
2005). It has the attention of many because it is believed to have much potential.
Currently it is still very young.

Chapter 5

Conclusion & Further Research
Recommendations

This thesis studied the Open Source market from a software evaluation point of view
in order to create a model for Open Source software evaluation including a case study
to test this model on real software.

In this final chapter the results of this research are discussed by answering the re-
search question and subquestions posed in the first chapter.

5.1 Research Results

In this thesis the unique characteristics of Open Source software were investigated to
construct a model for software evaluation of Open Source systems. In the first chapter
a number of questions were formed that served as a guideline for the research done in
this thesis. The answers to these questions will now be given by briefly recapitulating
the main issues addressed in this thesis.

The first question for which an answer was needed is:

Are there characteristics that make Open Source software unique that are
relevant to software evaluation, and if so, what are they?
A number of unique characteristics were found in relation to Open Source software,
among which the way the projects are community driven and the openness of infor-
mation that allows for a more comprehensive evaluation of this type of software. This
answers the first part of this question. The characteristics were defined in the cri-
teria of the model for Open Source software evaluation, combining this answer with
the answer of the second question:

Which criteria can be defined for Open Source software selection and eval-
uation?
The following ten criteria were found using literature on Open Source software:

Community The community of an Open Source software project is the driving force
behind the project.

40

Chapter 5. Conclusion & Further Research Recommendations 41

Release Activity The releases of an Open Source software project are an indication
of the activity and the progress of a project.

Longevity How long a project has existed combined with a healthy level of activity
is a measure of the chance of survival of a project.

License A commonly used license, like the GNU GPL, is preferable, and the license
needs to fit with the intended use.

Support Support for Open Source projects is available from three main sources –
the community, paid support by the project team and paid support offered by third
parties.

Documentation Development documentation plays an important part in the qual-
ity of the source code.

Security Security is the subject of heated debate, bugs can be found more easily
in the source code by developers as well as attackers. Security needs to be taken
seriously by the project team.

Functionality Different ways of evaluating the functionality are available, includ-
ing of course installing the software without restrictions.

Integration Standards, modularity and collaboration with other products. Rele-
vance depends greatly on the type of software, weight should be set according to the
relevance.

Goal and Origin The goal and original reason for creating the software gives a
good impression of whether it fits with the intended use and how serious the project
is undertaken. Information may not be available, lower weight than average.

The third question that was defined is: What information is needed to score
these criteria?
Using the practical part of the evaluation model, this question can be answered. For
each criterion a description of the evaluation process and the information necessary
to establish a score can be found in this thesis.

Four of the criteria are selected for the selection of a ‘short list’ of systems for on depth
evaluation. They are chosen for their importance and the ability to evaluate these
criteria in a short amount of time. These criteria are: Functionality, Community,
Release Activity and Longevity.

Selection can be done using two of choice models described by Anderson: The Elimi-
nation by Aspects model to eliminate part of the candidate list that does not meet a
minimum requirement on functionality and release activity, and the Linear Weighted
Attribute Model, using the four criteria mentioned above, to establish a ranked list
of the remaining candidates.

The result of the selection step should be a ‘short list’ of candidates that are at the top
of the list. These systems can then be evaluated in depth using the defined criteria.

Chapter 5. Conclusion & Further Research Recommendations 42

Finally, the model needs to be tested by applying it to real systems. The software
category of Course Management Systems (CMSs) was used in the case study.

The question that was leading the case study is:

How well does this model apply to evaluation of Course Management Sys-
tems?
Using the two models for selection mentioned above, the top two systems were found
that were evaluated in depth.

The evaluation process was followed successfully. The model was well applicable to
this type of software. The results were verified using information on the real life
performance of the top 5 systems. The findings were consistent with the result of the
evaluation.

Now the final question can be answered:

‘Is it possible to define a software evaluation model specifically aimed at
Open Source software, and can this model be applied to select a Course
Management System?’
The answer to this question: Yes. The model was defined using various literature and
was well applicable, the model was followed to come to a satisfactory result in the case
of CMSs, which was in agreement with the actual performance of the systems.

5.2 Contribution

The contribution of this thesis is twofold. A contribution is made to the target audi-
ence, the ones who want to evaluate Open Source software. The other is the contri-
bution to scientific research.

5.2.1 Target audience

The goal of this research project was to produce a model that gives those that want
to evaluate Open Source software, but are not familiar with this type of software,
insights into the characteristics, the development method and the project that runs
the development. These insights can be used to determine the best choice of software
from a list of candidates.

5.2.2 Scientific research

The field of Open Source software in scientific research is still small. With the grow-
ing interest of the business world in Open Source software, the scientific research is
growing as well, though it is still behind in many respects. This thesis can add to this
research field. It gives insights into Open Source from a business use perspective.
The model suggested here could be improved upon, so further research, building on
the model given here, can be done.

Chapter 5. Conclusion & Further Research Recommendations 43

5.3 Recommendations for Further Research

This research project has attempted to answer some questions regarding Open Source
software. This relatively new area does still leave much to explore. There are a num-
ber of ideas to extend on this research project, as well as new questions that could be
answered.

5.3.1 The Model

The model created in this thesis project could use more research and fine tuning.
The model defines criteria and the points of attention for these criteria, but it could
still use a more structural and better defined way of defining a score for a certain
piece of software. For example, a more statistical approach could be taken to define
community scores based on number of posts, users, and so on.

This model takes a general approach in terms of the stake holders that could be
involved in the deployment and use of the software, such as system administrators,
managers and users. One could investigate further how each criterion and its result
affect the different stake holders.

One other perspective that could use different approaches using this model, is the
situation of use, meaning whether the system is being deployed as-is or will be highly
customised. High customisation means higher priorities for modularity, (developer)
documentation, and so on. It also warrants further investigation of the source code.

In order to check whether the model works, a case study was conducted on Course
Management Systems. Of course one case study does not lead to a definitive answer.
The model proposed here could certainly be tested more thoroughly to see how it
holds up, and improved using the results of these tests and the considerations made
above.

While in the final stages of writing this thesis, my attention was brought to a paper
that has a very similar goal, entitled ‘Business Readiness Rating for Open Source;
A Proposed Open Standard to Facilitate Assessment and Adoption of Open Source
Software’. This model was developed by Spikesource, Carnegie Mellon West and Intel
(OpenBRR, 2005). The model shows many similarities to the model that is proposed
here. It would be interesting to investigate how these models relate, how they differ
and in what sense they could compliment each other. More information on this model
and the related developments can be found at http://www.openbrr.org .

5.3.2 Open Source software in education

Several articles, among which ‘Open Source Opens E-learning’ (Coppola and Neelley,
2004), argue that Open Source is very suitable for use in higher education, because
of tight budgets and the fact that educational institutions often have some good soft-
ware engineers on their staff, among other things. The use of Open Source applica-
tions in higher education, like the CMSs investigated in the case study of this thesis,
can be further investigated. It seems that though Open Source seems a logical choice
for universities, not many have taken an interest in this software so far.

http://www.openbrr.org

Bibliography

E.E. Anderson. Choice Models for the Evaluation and Selection of Software Packages.
Journal of Management Information Systems, 6(4):123–138, 1990.

ATutor. ATutor Requirements, 2005a. URL http://www.atutor.ca/atutor/
docs/requirements.php . Retrieved on June 8, 2005.

ATutor. ATutor Website - Translation, 2005b. URL http://www.atutor.ca/
atutor/translate/index.php . Retrieved on June 8, 2005.

ATutor. ATutor Website, 2005c. URL http://www.atutor.ca/ . Retrieved on July
1, 2005.

ATutor. Atutor Website : About, Philosophy, 2005d. URL http://atutor.ca/
philosophy.php . Retrieved on December 1, 2004.

ATutor. ATutor Roadmap, 2005e. URL http://www.atutor.ca/atutor/
roadmap.php . Retrieved on June 8, 2005.

D. Becker. California considers open-source shift, 2004. URL http://news.com.
com/2100-7344_3-5327581.html . Retrieved on August 8, 2005.

M. Bergquist and J. Ljungberg. The power of gifts: organizing social relationships in
open source communities. Information Systems Journal, 11(4):305–320, 2001.

S. Carless. Nokia and Apple Collaborate On Open Source Browser, 2005. URL http:
//apple.slashdot.org/article.pl?sid=05/06/21/1837219 . Retrieved on
August 8, 2005.

A. Chavan. Seven Criteria for Evaluating Open-Source Content Management Sys-
tems. Linux Journal Website, 2005. URL http://www.linuxjournal.com/
node/8301/ . Retrieved on August 9, 2005.

I. Clements. Virtual Learning Environment Comparison Report. Technical re-
port, Progress Through Training, 2003. URL http://www.pttsolutions.
com/modules.php?op=modload\&name=News\&file=article\&sid=74 . Re-
trieved on August 8, 2005.

COL. COL LMS Open Source. Technical report, Commonwealth of Learning,
2003. URL http://www.col.org/Consultancies/03LMSOpenSource.pdf .
Retrieved on August 8, 2005.

C. Coppola and E. Neelley. Open source - opens learning, Why open source makes
sense for education. Technical report, R-Smart Group, 2004. URL http:
//www.rsmart.com/assets/OpenSourceOpensLearningJuly2004.pdf . Re-
trieved on March 30, 2005.

44

http://www.atutor.ca/atutor/docs/requirements.php
http://www.atutor.ca/atutor/docs/requirements.php
http://www.atutor.ca/atutor/translate/index.php
http://www.atutor.ca/atutor/translate/index.php
http://www.atutor.ca/
http://atutor.ca/philosophy.php
http://atutor.ca/philosophy.php
http://www.atutor.ca/atutor/roadmap.php
http://www.atutor.ca/atutor/roadmap.php
http://news.com.com/2100-7344_3-5327581.html
http://news.com.com/2100-7344_3-5327581.html
http://apple.slashdot.org/article.pl?sid=05/06/21/1837219
http://apple.slashdot.org/article.pl?sid=05/06/21/1837219
http://www.linuxjournal.com/node/8301/
http://www.linuxjournal.com/node/8301/
http://www.pttsolutions.com/modules.php?op=modload&name=News&file=article&sid=74
http://www.pttsolutions.com/modules.php?op=modload&name=News&file=article&sid=74
http://www.col.org/Consultancies/03LMSOpenSource.pdf
http://www.rsmart.com/assets/OpenSourceOpensLearningJuly2004.pdf
http://www.rsmart.com/assets/OpenSourceOpensLearningJuly2004.pdf

Bibliography 45

C. Cowan. Software Security for Open-Source Systems. Security & Privacy Magazine,
IEEE, 1(1):38–45, 2003.

K. Crowston, H. Annabi, J. Howison, and C. Masango. Towards A Portfolio of
FLOSS Project Success Measures. In Collaboration, Conflict and Control: The 4th
Workshop on Open Source Software Engineering, International Conference on Soft-
ware Enginnering (ICSE 2004), pages 29–33, 2004. URL http://opensource.
ucc.ie/icse2004/Workshop_on_OSS_Engineering_2004.pdf . Retrieved on
March 30, 2005.

P. Donham. Ten Rules for Evaluating Open Source Software. Point of view pa-
per, Collaborative consulting, 2004. URL http://www.collaborative.ws/
leadership.php?subsection=27 . Retrieved on August 8, 2005.

M. Dougiamas and P.C. Taylor. Moodle: Using Learning Communities to Create an
Open Source Course Management System. In Proceedings of ED-MEDIA 2003,
2003. URL http://dougiamas.com/writing/edmedia2003/ . Retrieved on
March 30, 2005.

F. Duijnhouwer and C. Widdows. Capgemini Open Source Maturity Model.
Website: http://www.capgemini.com/technology/opensource/solutions.shtml, au-
gust 2003. URL http://www.seriouslyopen.org/nuke/html/modules/
Downloads/osmm/GB_Expert_Letter_Open_Source_Maturity_ . Retrieved
on March 30, 2005.

Edutools. Edutools Course Management Systems, 2005a. URL http://www.
edutools.info/course/ . Retrieved on August 8, 2005.

Edutools. Edutools Glossary - Instructional Standards Compliance, 2005b. URL
http://www.edutools.info/course/help/glossary.jsp#20 . Retrieved on
August 13, 2005.

J.R. Erenkratz and R.N. Taylor. Supporting Distributed and Decentralized Projects:
Drawing Lessons from the Open Source Community. Technical report, Insti-
tute for Software Research, 2003. URL http://www.erenkrantz.com/Geeks/
Research/Publications/Open-Source-Process-OSIC.pdf . Retrieved on
August 9, 2005.

FSF. The Free Software Definition, 2005a. URL http://www.gnu.org/
philosophy/free-sw.html . Retrieved on August 8, 2005.

FSF. Why “Free Software” is better than “Open Source”, 2005b. URL http://
www.fsf.org/licensing/essays/free-software-for-freedom.html . Re-
trieved on August 8, 2005.

G. Garzarelli. The Pure Convergence of Knowledge and Rights in Economic Organi-
zation: The Case of Open Source Software Development. In Industrial Dynamics
of the New and Old Economy - Who is Embracing Whom?, 2002.

R.L. Glass. A Sociopolitical Look at Open Source. Communications of the ACM, 46
(11):21–23, 2003.

B. Golden. Succeeding with Open Source. Addison-Wesley Pearson Education, 2005.
ISBN 0-321-26853-9.

http://opensource.ucc.ie/icse2004/Workshop_on_OSS_Engineering_2004.pdf
http://opensource.ucc.ie/icse2004/Workshop_on_OSS_Engineering_2004.pdf
http://www.collaborative.ws/leadership.php?subsection=27
http://www.collaborative.ws/leadership.php?subsection=27
http://dougiamas.com/writing/edmedia2003/
http://www.seriouslyopen.org/nuke/html/modules/Downloads/osmm/GB_Expert_Letter_Open_Source_Maturity_
http://www.seriouslyopen.org/nuke/html/modules/Downloads/osmm/GB_Expert_Letter_Open_Source_Maturity_
http://www.edutools.info/course/
http://www.edutools.info/course/
http://www.edutools.info/course/help/glossary.jsp#20
http://www.erenkrantz.com/Geeks/Research/Publications/Open-Source-Process-OSIC.pdf
http://www.erenkrantz.com/Geeks/Research/Publications/Open-Source-Process-OSIC.pdf
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
http://www.fsf.org/licensing/essays/free-software-for-freedom.html
http://www.fsf.org/licensing/essays/free-software-for-freedom.html

Bibliography 46

A. Hars and S. Ou. Working for Free? – Motivations of Participating in Open Source
Projects. International Journal of Electronic Commerce, 6:25–39, 2002.

G. Hertel. Motivation of software developers in Open source projects: an Internet-
based survey of contributors to the Linux kernel. Research Policy, 32(7):1159–1177,
2003.

J. Hoepman and B. Jacobs. Software Security Through Open Source. Technical re-
port, Institute for Computing and Information Sciences, Radboud University Ni-
jmegen, 2005. URL http://www.cs.ru.nl/~jhh/publications/oss-acm.
pdf . Retrieved on August 9, 2005.

ILIAS. ILIAS website, 2005. URL http://www.ilias.de . Retrieved on August 2,
2005.

B. McMullin and M. Munro. Moodle at DCU, 2004. URL http://odtl.dcu.ie/
wp/2004/odtl-2004-01.html . Retrieved on August 8, 2005.

A. Mockus, R.T. Fielding, and J. Herbsleb. A Case Study of Open Source Software
Development: The Apache Server. In Proceedings of the 22nd International Con-
ference on Software Engineering (ICSE 2000), 2000. URL http://opensource.
mit.edu/papers/mockusapache.pdf . Retrieved on March 30, 2005.

A. Mockus, R.T. Fielding, and J. Herbsleb. Two Case Studies of Open Source Soft-
ware Development: Apache and Mozilla. ACM Transactions on Software Engineer-
ing and Methodology, 11(3):309–346, 2002. URL http://opensource.mit.edu/
papers/mockusapache.pdf . Retrieved on March 30, 2005.

Moodle. Moodle.org - Background, 2005a. URL http://moodle.org/doc/?frame=
background.html . Retrieved on August 8, 2005.

Moodle. Moodle Buzz - reviews, papers and listings about Moodle, 2005b. URL
http://moodle.org/mod/resource/view.php?id=102 . Retrieved on August
8, 2005.

Moodle. Moodle Developer Manual, 2005c. URL http://moodle.org/doc/?file=
developer.html#architecture . Retrieved on August 13, 2005.

Moodle. Course: Moodle Documentation, 2005d. URL http://moodle.org/
course/view.php?id=29 . Retrieved on August 8, 2005.

Moodle. Moodle Documentation - Installation Requirements, 2005e. URL http://
moodle.org/mod/resource/view.php?id=3856 . Retrieved on August 8, 2005.

Moodle. Moodle Downloads - Language Packs, 2005f. URL http://download.
moodle.org/lang . Retrieved on August 8, 2005.

Moodle. Moodle Downloads - Activity Modules, 2005g. URL http://download.
moodle.org/modules . Retrieved on August 8, 2005.

Moodle. Moodle Philosophy, 2005h. URL http://moodle.org/doc/?frame=
philosophy.html . Retrieved on August 13, 2005.

Moodle. Moodle Roadmap, 2005i. URL http://moodle.org/doc/future.html .
Retrieved on August 8, 2005.

http://www.cs.ru.nl/~jhh/publications/oss-acm.pdf
http://www.cs.ru.nl/~jhh/publications/oss-acm.pdf
http://www.ilias.de
http://odtl.dcu.ie/wp/2004/odtl-2004-01.html
http://odtl.dcu.ie/wp/2004/odtl-2004-01.html
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://moodle.org/doc/?frame=background.html
http://moodle.org/doc/?frame=background.html
http://moodle.org/mod/resource/view.php?id=102
http://moodle.org/doc/?file=developer.html#architecture
http://moodle.org/doc/?file=developer.html#architecture
http://moodle.org/course/view.php?id=29
http://moodle.org/course/view.php?id=29
http://moodle.org/mod/resource/view.php?id=3856
http://moodle.org/mod/resource/view.php?id=3856
http://download.moodle.org/lang
http://download.moodle.org/lang
http://download.moodle.org/modules
http://download.moodle.org/modules
http://moodle.org/doc/?frame=philosophy.html
http://moodle.org/doc/?frame=philosophy.html
http://moodle.org/doc/future.html

Bibliography 47

moodle.com, 2005. URL http://www.moodle.com/ . Retrieved on June 7, 2005.

Mozilla. Mozilla.org Support, 2005. URL http://www.mozilla.org/support/ .
Retrieved on February 16, 2005.

MySQL. MySQL Support Website, 2005. URL http://www.mysql.com/support/
premier.html . Retrieved on February 16, 2005.

Netcraft. July 2005 Web Server Survey, 2005. URL http://news.netcraft.com/
archives/web_server_survey.html . Retrieved on July 1, 2005.

M. Nijdam. Vijf adviezen voor selectie van oss-compontenten. Informatie : maand-
blad voor informatieverwerking, 45(7):28–30, 2003.

Novell. Novell Announces Agreement to Acquire Leading Enterprise Linux Tech-
nology Company SUSE LINUX, 11 2003. URL http://www.novell.com/news/
press/archive/2003/11/pr03069.html . Retrieved on August 8, 2005.

OpenBRR. Business Readiness Rating for Open source; A Proposed Open Stan-
dard to Facilitate Assesment and Adoption of Open Source Software, RFC1, 2005.
URL http://www.openbrr.org/docs/BRR_whitepaper_2005RFC1.pdf . Re-
trieved on August 10, 2005.

OpenOffice.org. OpenOffice.org Writer Product Information, 2005. URL http://
www.openoffice.org/product/writer.html . Retrieved on August 10, 2005.

OReilly. Online Catalog - Using Moodle, 2005. URL http://www.oreilly.com/
catalog/moodle/ . Retrieved on August 8, 2005.

T. O’Reilly. Ten Myths about Open Source Software. URL http://opensource.
oreilly.com/news/myths_1199.html . Retrieved on August 8, 2005, Published
on O’Reilly (http://www.oreilly.com), 1999.

Ose.Nz.Org. LMS Technical Evaluation, 2004. URL http://eduforge.org/
docman/view.php/7/18/LMS%20Technical%20Evaluation%20-%20May04.
pdf . Retrieved on August 8, 2005.

OSI. Open Source Initiative, Open Source Definition, version 1.9, 2002, 2002.
URL http://opensource.org/docs/definition.php . Retrieved on August
8, 2005.

OSI. Open Source Initiative, Open Source Licenses, 2005. URL http://
opensource.org/licenses/ . Retrieved on August 9, 2005.

C. Payne. On the Security of Open Source Software. Information systems journal, 12
(1):61–78, 2002.

B. Perens. Bruce Perens - Biographical Notes and Resume, 2005. URL http://
perens.com/Articles/Bio.html . Retrieved on August 8, 2005.

E.S. Raymond. Goodbye, “free software”; hello, “open source”, feb 1998a. URL http:
//www.catb.org/~esr/open-source.html . Retrieved on February 24, 2005.

E.S. Raymond. The Cathedral and the Bazaar. First Monday, 3(3), 1998b. URL http:
//www.firstmonday.org/issues/issue3_3/raymond/ . Retrieved on March
30, 2005.

http://www.moodle.com/
http://www.mozilla.org/support/
http://www.mysql.com/support/premier.html
http://www.mysql.com/support/premier.html
http://news.netcraft.com/archives/web_server_survey.html
http://news.netcraft.com/archives/web_server_survey.html
http://www.novell.com/news/press/archive/2003/11/pr03069.html
http://www.novell.com/news/press/archive/2003/11/pr03069.html
http://www.openbrr.org/docs/BRR_whitepaper_2005RFC1.pdf
http://www.openoffice.org/product/writer.html
http://www.openoffice.org/product/writer.html
http://www.oreilly.com/catalog/moodle/
http://www.oreilly.com/catalog/moodle/
http://opensource.oreilly.com/news/myths_1199.html
http://opensource.oreilly.com/news/myths_1199.html
http://eduforge.org/docman/view.php/7/18/LMS%20Technical%20Evaluation%20-%20May04.pdf
http://eduforge.org/docman/view.php/7/18/LMS%20Technical%20Evaluation%20-%20May04.pdf
http://eduforge.org/docman/view.php/7/18/LMS%20Technical%20Evaluation%20-%20May04.pdf
http://opensource.org/docs/definition.php
http://opensource.org/licenses/
http://opensource.org/licenses/
http://perens.com/Articles/Bio.html
http://perens.com/Articles/Bio.html
http://www.catb.org/~esr/open-source.html
http://www.catb.org/~esr/open-source.html
http://www.firstmonday.org/issues/issue3_3/raymond/
http://www.firstmonday.org/issues/issue3_3/raymond/

Bibliography 48

E.S. Raymond. Homesteading the Noosphere. First Monday, 3(10), 1998c.
URL http://www.firstmonday.org/issues/issue3_10/raymond/index.
html . Retrieved on March 30, 2005.

Sakai. About Sakai Web Page, 2005. URL http://www.sakaiproject.org/
index.php?option=com_content&task=view&id=103&Itemid=208 . Re-
trieved on August 8, 2005.

W. Scacchi. Understanding the Requirements for Developing Open Source
Software Systems. In IEEE Proceedings – Software, volume 149, pages
24–29, 2002. URL http://www1.ics.uci.edu/wscacchi/Papers/New/
Understanding-OS-Requirements.pdf . Retrieved on March 30, 2005.

D.C. Sharma. IBM tests new ways to support open source, 2005. URL http://news.
com.com/2100-7344_3-5595935.html . Retrieved on August 8, 2005.

D.C. Sharma. Indian president calls for open source in defense, 2004. URL http:
//news.com.com/2100-7344_3-5259836.html . Retrieved on August 8, 2005.

R. Stallman. Why Software Should Be Free. URL http://www.gnu.org/
philosophy/shouldbefree.html . Retrieved on August 8, 2005, On FSF home-
page, 1992.

Surf. Wat heeft? Een overzicht van ICT&O en ELO websites van hoger onder-
wijs instellingen in Nederland en Vlaanderen, 2005a. URL http://e-learning.
surf.nl/e-learning/watheeft#universiteiten%20nederland . Retrieved
on August 8, 2005.

Surf. Surf Homepage, 2005b. URL http://www.surf.nl/en/home/index.php .
Retrieved on June 7, 2005.

UniKöln. eLearning an der Universität zu Köln, 2005. URL http://www.ilias.
uni-koeln.de/ . Retrieved on August 8, 2005.

H.R. Varian and C.M. Varian. MOXIE: Microsoft Office-Linux Interoperability Exper-
iment. ACM Queue, 1(5), July/August 2003. URL http://www.acmqueue.com/
modules.php?name=Content&pa=showpage&pid=55 . Retrieved on August 10,
2005.

VUB. Van Blackboard naar PointCarré; Rapport Keuze en implementatie teleleer-
platform VUB, 2004. URL http://elearning.surf.nl/docs/e-learning/
rapport_van_blackboard_naar_pointcarre.pdf . Retrieved on August 2,
2005.

S. Weber. The Success of Open Source. Harvard University Press, 2004. ISBN
0674012925.

D. Wheeler. Generally Recognized ad Mature (GRAM) OSS/FS programs. URL http:
//dwheeler.com/gram.html . Retrieved on August 11, 2005, 2004.

D. Wheeler. How to evaluate Open Source / Free Software (OSS/FS) Programs.
URL http://www.dwheeler.com/oss_fs_eval.html . Retrieved on February
17, 2005, 2005.

http://www.firstmonday.org/issues/issue3_10/raymond/index.html
http://www.firstmonday.org/issues/issue3_10/raymond/index.html
http://www.sakaiproject.org/index.php?option=com_content&task=view&id=103&Itemid=208
http://www.sakaiproject.org/index.php?option=com_content&task=view&id=103&Itemid=208
http://www1.ics.uci.edu/ wscacchi/Papers/New/Understanding-OS-Requirements.pdf
http://www1.ics.uci.edu/ wscacchi/Papers/New/Understanding-OS-Requirements.pdf
http://news.com.com/2100-7344_3-5595935.html
http://news.com.com/2100-7344_3-5595935.html
http://news.com.com/2100-7344_3-5259836.html
http://news.com.com/2100-7344_3-5259836.html
http://www.gnu.org/philosophy/shouldbefree.html
http://www.gnu.org/philosophy/shouldbefree.html
http://e-learning.surf.nl/e-learning/watheeft#universiteiten%20nederland
http://e-learning.surf.nl/e-learning/watheeft#universiteiten%20nederland
http://www.surf.nl/en/home/index.php
http://www.ilias.uni-koeln.de/
http://www.ilias.uni-koeln.de/
http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=55
http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=55
http://elearning.surf.nl/docs/e-learning/rapport_van_blackboard_naar_pointcarre.pdf
http://elearning.surf.nl/docs/e-learning/rapport_van_blackboard_naar_pointcarre.pdf
http://dwheeler.com/gram.html
http://dwheeler.com/gram.html
http://www.dwheeler.com/oss_fs_eval.html

Bibliography 49

Wikipedia. Wikipedia.org page on BSD, 2005a. URL http://en.wikipedia.org/
wiki/BSD . Retrieved on January 18, 2005.

Wikipedia. Wikipedia.org page on Managed Learning Environments, 2005b. URL
http://en.wikipedia.org/wiki/Managed_Learning_Environment . Re-
trieved on August 12, 2005.

Wikipedia. WikiPedia entry on TeX, 2005c. URL http://en.wikipedia.org/
wiki/TeX . Retrieved on August 8, 2005.

H. Yamagata. The Pragmatist of Free Software: Linus Torvalds Interview. Hotwired
Japan, 1997. URL http://kde.sw.com.sg/food/linus.html . Retrieved on
August 8, 2005.

http://en.wikipedia.org/wiki/BSD
http://en.wikipedia.org/wiki/BSD
http://en.wikipedia.org/wiki/Managed_Learning_Environment
http://en.wikipedia.org/wiki/TeX
http://en.wikipedia.org/wiki/TeX
http://kde.sw.com.sg/food/linus.html

Appendix A

The Open Source Definition

Source: http://www.opensource.org/docs/definition.php , Retrieved May
11, 2005

The Open Source Definition

Version 1.9

• The indented, italicized sections below appear as annotations to the Open Source
Definition (OSD) and are not a part of the OSD. A plain version of the OSD
without annotations can be found here.

• A printable version of this annotated page is available here.

• A PDF poster of the OSD is also available.

Introduction

Open source doesn’t just mean access to the source code. The distribution terms of
open-source software must comply with the following criteria:

1. Free Redistribution The license shall not restrict any party from selling or giv-
ing away the software as a component of an aggregate software distribution contain-
ing programs from several different sources. The license shall not require a royalty
or other fee for such sale.

• Rationale: By constraining the license to require free redistribution, we elimi-
nate the temptation to throw away many long-term gains in order to make a few
short-term sales dollars. If we didn’t do this, there would be lots of pressure for
cooperators to defect.

50

http://www.opensource.org/docs/definition.php

Appendix A. The Open Source Definition 51

2. Source Code The program must include source code, and must allow distribu-
tion in source code as well as compiled form. Where some form of a product is not
distributed with source code, there must be a well-publicized means of obtaining the
source code for no more than a reasonable reproduction cost—preferably, download-
ing via the Internet without charge. The source code must be the preferred form in
which a programmer would modify the program. Deliberately obfuscated source code
is not allowed. Intermediate forms such as the output of a preprocessor or translator
are not allowed.

• Rationale: We require access to un-obfuscated source code because you can’t
evolve programs without modifying them. Since our purpose is to make evolution
easy, we require that modification be made easy.

3. Derived Works The license must allow modifications and derived works, and
must allow them to be distributed under the same terms as the license of the original
software.

• Rationale: The mere ability to read source isn’t enough to support independent
peer review and rapid evolutionary selection. For rapid evolution to happen,
people need to be able to experiment with and redistribute modifications.

4. Integrity of The Author’s Source Code The license may restrict source-code
from being distributed in modified form only if the license allows the distribution of
‘patch files” with the source code for the purpose of modifying the program at build
time. The license must explicitly permit distribution of software built from modified
source code. The license may require derived works to carry a different name or
version number from the original software.

• Rationale: Encouraging lots of improvement is a good thing, but users have a
right to know who is responsible for the software they are using. Authors and
maintainers have reciprocal right to know what they’re being asked to support
and protect their reputations.

• Accordingly, an open-source license must guarantee that source be readily avail-
able, but may require that it be distributed as pristine base sources plus patches.
In this way, “unofficial” changes can be made available but readily distinguished
from the base source.

5. No Discrimination Against Persons or Groups The license must not dis-
criminate against any person or group of persons.

• Rationale: In order to get the maximum benefit from the process, the maximum
diversity of persons and groups should be equally eligible to contribute to open
sources. Therefore we forbid any open-source license from locking anybody out of
the process.

• Some countries, including the United States, have export restrictions for certain
types of software. An OSD-conformant license may warn licensees of applicable
restrictions and remind them that they are obliged to obey the law; however, it
may not incorporate such restrictions itself.

Appendix A. The Open Source Definition 52

6. No Discrimination Against Fields of Endeavor The license must not restrict
anyone from making use of the program in a specific field of endeavor. For example,
it may not restrict the program from being used in a business, or from being used for
genetic research.

• Rationale: The major intention of this clause is to prohibit license traps that
prevent open source from being used commercially. We want commercial users to
join our community, not feel excluded from it.

7. Distribution of License The rights attached to the program must apply to all
to whom the program is redistributed without the need for execution of an additional
license by those parties.

• Rationale: This clause is intended to forbid closing up software by indirect
means such as requiring a non-disclosure agreement.

8. License Must Not Be Specific to a Product The rights attached to the pro-
gram must not depend on the program’s being part of a particular software distri-
bution. If the program is extracted from that distribution and used or distributed
within the terms of the program’s license, all parties to whom the program is redis-
tributed should have the same rights as those that are granted in conjunction with
the original software distribution.

• Rationale: This clause forecloses yet another class of license traps.

9. License Must Not Restrict Other Software The license must not place re-
strictions on other software that is distributed along with the licensed software. For
example, the license must not insist that all other programs distributed on the same
medium must be open-source software.

• Rationale: Distributors of open-source software have the right to make their
own choices about their own software.

• Yes, the GPL is conformant with this requirement. Software linked with GPLed
libraries only inherits the GPL if it forms a single work, not any software with
which they are merely distributed.

10. License Must Be Technology-Neutral No provision of the license may be
predicated on any individual technology or style of interface.

• Rationale: This provision is aimed specifically at licenses which require an
explicit gesture of assent in order to establish a contract between licensor and
licensee. Provisions mandating so-called “click-wrap” may conflict with impor-
tant methods of software distribution such as FTP download, CD-ROM antholo-
gies, and web mirroring; such provisions may also hinder code re-use. Confor-
mant licenses must allow for the possibility that (a) redistribution of the software
will take place over non-Web channels that do not support click-wrapping of the
download, and that (b) the covered code (or re-used portions of covered code) may
run in a non-GUI environment that cannot support popup dialogues.

Appendix B

Community Activity

Please turn to the next page for the community activity examples.

53

Appendix B. Community Activity 54

Figure B.1: Example of an active community – Drupal ‘How-To’ subforum

This is the Drupal ‘How-To’ subforum. With over 3500 topics and over 12000 posts,
the most active subforum. This subforum is meant for asking questions about using
the Drupal Content Management System. The topics visible here go back less than
a day, and most have multiple replies. The Drupal forum consists of three categories
and a total of 19 subforums, 10437 topics and 44169 posts as of April 21, 2005. The
first posts were made in June 2002, the first posts in this subforum in January 2004.

Source: http://drupal.org/forum/22 Retrieved April 21, 2005

http://drupal.org/forum/22

Appendix B. Community Activity 55

Figure B.2: Example of a not very active community: lucidCMS How-to support fo-
rum

This is the lucidCMS How-to support forum. The visible posts go back almost six
months. Most threads have multiple replies. The forum consists of 8 subforums, 153
topics and 759 posts. The first posts were made during October 2004. This shows
that this project has not been around very long, though the activity level in general
is still quite low. It could have potential in time but for current evaluation of this
project as a candidate, the community activity is too low.

Source:http://forum.lucidcms.net/list.php?1 Retrieved April 21, 2005

http://forum.lucidcms.net/list.php?1

Appendix C

Case Study – Functional
Requirements

This list of functional requirements was used in the case study. This list is con-
structed using the main features from a website that gives detailed CMS overviews:
Edutools (2005a) and a comparison report: COL (2003).

• Course based – the system is based on courses, each course has its own area in
which the following features are present:

– Basic course information – the teacher must be able to place basic informa-
tion about the course (description, requirements for passing, information
on the teachers, information about lectures).

– File sharing – there is some type of file sharing available so that teachers
can post files in a course area for the students.

– Communication – the teacher has means of communicating with the stu-
dents through the course interface, for example through announcements
posted on the course area website and/or through an e-mail interface in
the course area.

– Groups – there is functionality to form groups of students in a course, the
teacher can control the assignment of the groups. The groups can share
files and communicate through the group area.

– Tests and quizzes – There should be a possibility for the teacher to create
online tests and quizzes for the students, either for self-assessment or for
formal assessment. The possibility of posing a deadline, at which time a
student should have finished and after which the test is closed, should be
present.

• Access control – there has to be a system in place to grant various levels of
access for administrators, teachers and students, each with their own rights. A
link to an existing system of access for providing login information, such as a
database or LDAP system, is strongly preferable.

• Administration – a system administrator must be able to easily add courses and
assign teachers in the system.

• Language – the software needs to be available in English.

56

Appendix D

Use of CMSs in Dutch
Universities

This is a list of Course Management Systems and the Dutch universities that use
them, constructed using the information of the Surf1 e-learning site on the supported
systems of higher education in the Netherlands and Belgium (Surf, 2005a).

Blackboard • Erasmus
• Katholieke Universiteit Nijmegen (KUN)
• Rijksuniversiteit Groningen (RUG)
• Technische Universiteit Delft (TUDelft)
• Universiteit Leiden – combined with TeleTop, TeleTop only at Faculty of

Law
• Universiteit van Tilburg (UvT)
• Universiteit van Utrecht (UU) – certain faculties, others use WebCT
• Universiteit van Amsterdam (UvA)
• Vrije Universiteit (VU)
• Wageningen Universiteit (WAU)

WebCT • Universiteit van Utrecht (certain faculties, others use Blackboard)

TeleTop (created by UTwente)

• Universiteit Twente (UT)
• Universiteit Leiden (Faculty of Law only, remainder is Blackboard)

StudyWeb (self-made system of TUe)

• Technische Universiteit Eindhoven (TUe)

StudieNet (self-made system of OU)

• Open Universiteit (OU) – distance education University

1higher education and research partnership organisation for network services and information and
communications technology (ICT). (Surf, 2005b) http://www.surf.nl

57

http://www.surf.nl

Appendix E

Candidate List

The following table lists all the candidates investigated in the selection step of the
case study. Two resources were used in constructing this list: The Commonwealth of
Learning LMS Report (COL, 2003), marked in the ‘C’ column, and the Edutools.info
website Edutools (2005a), marked in the ‘E’ column.

Table E.1: Case Study Candidate List

Candidate C E Website
ARIADNE x http://www.ariadne-eu.org/
ATutor x x http://www.atutor.com
Bazaar x x http://ts.mivu.org
Bodington Commons x x http://www.bodington.org
BSCW x http://bscw.fit.fraunhofer.de/
CHEF x x http://www.chefproject.org
Claroline x x http://www.claroline.net
Classweb x x http://classweb.ucla.edu
Colloquia x http://www.colloquia.net
Coursemanager x http://www.coursemanager.com/
Coursework x x http://getcoursework.stanford.edu/
COSE VLE x http://www.staffs.ac.uk/COSE/
Cyberprof x http://www.howhy.com/home/
Dokeos http://www.dokeos.com
DotLRN x x http://dotlrn.org
Eledge x x http://eledge.sourceforge.net/
FLE3 x x http://fle3.uiah.fi
Ganeesha x http://www.anemalab.org/commun/english.htm
ILIAS x x http://www.ilias.uni-koeln.de/ios/index-e.html
Jones E-Education x http://www.jonesadvisorygroup.com/index.php
Kewl x x http://kewl.uwc.ac.za/
LON-CAPA x x http://www.lon-capa.org
Manhattan x x http://manhattan.sourceforge.net/
MimerDesk x x http://www.mimerdesk.org/community/engine.html?page=2
Moodle x x http://www.moodle.org
OpenCourse x http://www.opencourse.net

58

http://www.ariadne-eu.org/
http://www.atutor.com
http://ts.mivu.org
http://www.bodington.org
http://bscw.fit.fraunhofer.de/
http://www.chefproject.org
http://www.claroline.net
http://classweb.ucla.edu
http://www.colloquia.net
http://www.coursemanager.com/
http://getcoursework.stanford.edu/
http://www.staffs.ac.uk/COSE/
http://www.howhy.com/home/
http://www.dokeos.com
http://dotlrn.org
http://eledge.sourceforge.net/
http://fle3.uiah.fi
http://www.anemalab.org/commun/english.htm
http://www.ilias.uni-koeln.de/ios/index-e.html
http://www.jonesadvisorygroup.com/index.php
http://kewl.uwc.ac.za/
http://www.lon-capa.org
http://manhattan.sourceforge.net/
http://www.mimerdesk.org/community/engine.html?page=2
http://www.moodle.org
http://www.opencourse.net

Appendix E. Candidate List 59

Candidate C E Website
OCW open courseware x http://ocw.mit.edu
OLMS x http://www.psych.utah.edu/learn/olms/
Opaltree x http://www.opaltree.com/
OpenLMS x http://openlms.sourceforge.net
OpenUSS x http://openuss.sourceforge.net
Ripples/Manic x http://ripples.cs.umass.edu/
Sakai x http://www.sakaiproject.org/
Shadow netWorkSpace x http://sns.internetschools.org/∼ischools/info/sns2/index.cgi
Uni Open Platform x http://uni-open-platform.fernuni-hagen.de/
WhiteBoard x x http://whiteboard.sourceforge.net

http://ocw.mit.edu
http://www.psych.utah.edu/learn/olms/
http://www.opaltree.com/
http://openlms.sourceforge.net
http://openuss.sourceforge.net
http://ripples.cs.umass.edu/
http://www.sakaiproject.org/
http://sns.internetschools.org/~ischools/info/sns2/index.cgi
http://uni-open-platform.fernuni-hagen.de/
http://whiteboard.sourceforge.net

Appendix F

Selection Results

F.1 Step 1: Elimination

In the first step of the selection process a number of candidates was eliminated that
did not meet certain criteria. The values of these criteria and remarks are shown in
the table below.

Table F.1: Selection by Elimination

Project Last release FR Remarks
ARIADNE ? No Does not appear to be a CMS but

some e-learning related tools.
ATutor 2005–04–02 Yes
Bazaar 2004–04–08 Yes
Bodington Commons 2005–11–05 Yes
BSCW 2004–12–11 No Not a CMS but a group collabora-

tion tool.
CHEF N/A N/A Is discontinued, efforts have been

moved to Sakai project.
Claroline 2005–26–04 Yes Project has split with some of the

developers, Dokeos is a spinoff.
Classweb 2002–27–09 ? Website will not load.

web.archive.org shows links
to SourceForge and FreshMeat.
release dates are from there.

Colloquia 2002–30–10 Yes Very group based, possibly not re-
ally a CMS.

Coursemanager ? Yes Can not find download or evidence
that this is Open Source.

Coursework N/A N/A Continued with Sakai project.
COSE VLE ? Yes Need to register to download.

Very little information.

60

Appendix F. Selection Results 61

Project Last release FR Remarks
Cyberprof ? ? Announcement of upcoming re-

lease on July 1, 2001! No down-
load available.

Dokeos 2004–21–09 Yes Spinoff of Claroline.
DotLRN 2005–12–01 Yes
Eledge 2003–21–10 Yes Website info is minimal.
FLE3 2005–01–04 Yes
Ganeesha 2005–25–01 No Full CMS but only in French at

the moment. A multilingual ver-
sion may be released in the fu-
ture. For the moment, only a sum-
mary page with minimal informa-
tion is available in English.

ILIAS 2005–22–04 Yes German based, and it shows.
Jones E-Education 2004–05–04 Yes License is not really Open Source.
Kewl ? ? The Kewl page appears to be

an installation. Links to down-
loads give no additional informa-
tion and require registration for
downloading. Found information
on KEWL.nextgen but states on
the site it is still in very early
stages. Not currently a viable
candidate.

LON-CAPA 2005–26–03 Yes (?) Appears to have much work in
progress.

Manhattan 2004–13–05 Yes
MimerDesk 2003–15–11 Yes Not sure if it is course based.
Moodle 2005–07–05 Yes
OpenCourse 2002–21–09 No Beta, apparently no development

anymore.
OCW open courseware N/A No Not a CMS, MIT educational re-

source of MIT course materials.
OLMS 2004–27–02 ? Almost no information on the

website.
Opaltree N/A N/A No release yet, according to COL

LMS report had a target release
of august 2003. Press release
and download page say ‘Under
construction’.

OpenLMS ? Yes Can only find a demo download
dated Feb 2003.

OpenUSS 2004–23–06 Yes

Appendix F. Selection Results 62

Project Last release FR Remarks
Ripples/Manic ? ? Can not find download or any info

on the software itself.
Sakai 2005–07–03 Yes Very young project. Check the ex-

isting features further.
Shadow netWorkSpace 2002–25–10 Yes
Uni Open Platform 2004–10–09 Yes
WhiteBoard 2003–07–08 Yes

F.2 Functionality Scores

Table F.2: Functionality Scores

Project Score Remarks
ATutor 10 ATutor’s main priority is accessibility, holding to

standards of W3C for website accessibility. The
feature set seems complete.

Bazaar 6 No feature description on the website. In the
demo, the features seem very basic.

Bodington Commons 4 Little information on features. No online demo.
Claroline 6 Online demo. Features seem complete. It seems

like they have used Blackboard as a template.
Components are reused, such as forum which is
built from phpBB.

COSE VLE 2 No demo, feature list is small.
Dokeos 6 Demo, screenshots. Feature set seems complete.
DotLRN 6 Feature list on website seems complete, no

demo.
Eledge 2 Demo does not work. Login page looks very ba-

sic. No feature list on the website.
FLE3 4 Demo and screenshots. Interface is a bit odd.

Features seem somewhat basic.
ILIAS 8 Features seem complete though the interface

takes quite some getting used to.
LON-CAPA 6 Features seem reasonably complete though

some features are explicitly excluded that might
be important, and the interface seems very
basic.

Manhattan 4 No demo, features list seems reasonable.
MimerDesk 6 Feature list and demo. Seems complete.
Moodle 10 The Moodle website is built in Moodle itself.

There are a few demo courses that show many
different features. Feature set is very complete.

Appendix F. Selection Results 63

Project Score Remarks
OLMS 2 Demo is very basic, only see announcements, not

sure if any other are features present.
OpenUSS 4 Basic features seem present according to web-

site info, no demo.
Sakai 6 Not sure if feature set is complete. Young

project.
Uni Open Platform 2 Feature list is small. Online demo shows abso-

lute minimal functionality. Not complete.
WhiteBoard 2 Is built after Blackboard, features seem to be ba-

sically implemented.

F.3 Community Scores

Table F.3: Community Scores

Project Score Topics Posts Remarks
ATutor 6 1140 4247 Support forums, since May 10

2003.
Bazaar 2 Mailing list. No information on

the list, need to subscribe to get
in.

Bodington Commons 4 184 SourceForge mailing list devel-
opment since April. Recent move
to this list?

Claroline 8 3186 10998 Forums on use, development,
multilingual and bugs, since
March 2002.

COSE VLE 1 No visible signs of a community.
Just a guestbook.

Dokeos 8 3226 12882 Community section on mainpage
lists forum, wiki, users, cus-
tomers, team. The latter three
gives a list of each (with option
to add to users). Forums since
March 2002 (Posts overlap with
Claroline!).

DotLRN 5 990 .LRN Q&A forum on OpenACS
forums, 990 threads, no info
on number of posts, since June
2002.

Eledge 4 277 Forums on SourceForge but no
link there from the mainpage.
Since Dec 2001.

Appendix F. Selection Results 64

Project Score Topics Posts Remarks
FLE3 3 Mailing lists (announce, users,

dev) with archives. Activity is
low (No posts at all in users
March, February, November, the
rest is about 5 posts a month. No
totals, dev a little more, some-
times 10 posts a month, but
some months nothing).

ILIAS 8 2505 14422 Forums, subforums spread thin,
with some < 10 topics a piece.

LON-CAPA 4 Mailing list with archives, be-
tween 10 and 80 posts a month.

Manhattan 3 SourceForge mailing list with
archives, about 10 posts a
month.

MimerDesk 2 Need to login to get to the main
‘community’, but inside cannot
find MimerDesk group.

Moodle 10 14367 Moodle community announce-
ment on mainpage. Links to rel-
evant forums everywhere. Moo-
dle website is built in Moodle it-
self. Community is very active.
The main ‘course’, ‘Using Moo-
dle’ has 14367 topics and there
are seperate courses for each
language Moodle is translated in
and several other courses such
as documentation and business
uses.

OLMS 2 3 Three messages in SourceForge
forum since early 2004, no mail-
ing lists.

OpenUSS 2 12 Site appears to be built in
OpenUSS, hard to navigate to
get to any discussion. Discussion
is dated (2002), mailing list has
some more recent posts but only
1 in 2005, 4 in 2004, 3 in 2003.

Sakai 5 1399 Site is built in Sakai. No fig-
ures on number of posts, esti-
mated – 110 on user + devel-
oper discussion, e-mail acrhives
showing 865 messages in devel-
opment, 424 in users.

Appendix F. Selection Results 65

Project Score Topics Posts Remarks
Uni Open Platform 1 Registration leads to a site about

this type of software, cannot find
any discussion related specifi-
cally to Uni Open Platform.

WhiteBoard 2 6 Forum on SourceForge.

F.4 Release Activity Scores

Table F.4: Release Activity Scores

Project Score Last Release 2004/5 Wgt Remarks
ATutor 8 2005–04–02 6 8
Bazaar 2 2004–04–08 3 2
Bodington C. 6 2005–12–05 9 3
Claroline 6 2005–26–04 7 5
COSE VLE 0 ? ? ?
Dokeos 4 2004–21–09 3 6 Dokeos forked from

Claroline 2004.
DotLRN 4 2005–12–01 4 4
Eledge 1 2003–21–10 0 0
FLE3 3 2005–01–04 1 4 1.4.5 in nov 2003, 1.5

in apr 2005.
ILIAS 6 2005–22–04 7 4 ILIAS has 2 major

versions (ILIAS2 and
3) under development.
Apart from stable re-
leases some beta re-
leases were made.

LON-CAPA 5 2005–25–03 13 2 Releases estimated.
FreshMeat info goes
back to July 2004.

Manhattan 2 2004–13–05 3 3
MimerDesk 1 2003–15–11 0 0
Moodle 10 2005–07–05 13 5
OLMS 1 2004–27–02 1 4
OpenUSS 2 2004–23–06 1 3 All very unclear.
Sakai 3 2005–07–03 2 5 Project’s first release

in Oct. 2004.
Uni O.P. 2 2004–10–09 ? ? Very little information

on releases.
WhiteBoard 0 2003–07–08 0 0

Appendix F. Selection Results 66

F.5 Longevity Scores

Table F.5: Longevity Scores

Project Score 1st Release Remarks
ATutor 7 01/11/2002 Mentions in various articles

on e-learning systems, recom-
mended by COL LMS report.

Bazaar 10 09/23/2000
Bodington Commons 4 08/15/2003 Date is from release 2.10 RC1,

cannot find data on earlier
releases.

Claroline 7 03/01/2002 Article in french Linux maga-
zine. Date is from first forum
posts.

COSE VLE 0 ? No information on releases.
Dokeos 2 04/23/2004 Date is first release after sepa-

ration from Claroline, the soft-
ware is the same age as Claro-
line. Was chosen as primary
CMS for Brussels university.

DotLRN 5 03/30/2003 Shortlisted in COL LMS report.
Eledge 7 12/27/2001
FLE3 7 02/15/2002
ILIAS 10 09/25/2000 Recommended in COL LMS

report.
LON-CAPA 7 02/01/2002 From mailing list archives.
Manhattan 9 01/30/2001
MimerDesk 7 01/10/2002
Moodle 6 08/20/2002 Shortlisted in COL LMS re-

port, article in Linux magazine,
chosen to be primary CMS for
Dublin University.

OLMS 3 02/27/2004
OpenUSS 9 04/05/2001
Sakai 1 10/18/2004
Uni Open Platform 6 06/14/2002 Release of 2.0, cannot find older

releases.
WhiteBoard 5 11/04/2002

Appendix F. Selection Results 67

F.6 Total Selection Scores

The table with the total scores is shown below.

The scores of each criterion are shown in the first columns (F = Functionality, C =
Community, R = Release Activity, L = Longevity) and the calculated Total scores in
the last column. These are calculated using the weights from table F.7.

Table F.6: Total Selection Scores

Project F C R L Total
Moodle 10 10 10 6 10
ATutor 10 6 8 7 8
ILIAS 8 8 6 10 8
Claroline 6 8 6 7 7
Dokeos 6 8 4 2 6
LON-CAPA 6 4 5 7 5
DotLRN 6 5 4 5 5
Bodington Commons 4 4 6 4 5
Sakai 6 5 3 1 4
Bazaar 6 2 2 10 4
FLE3 4 3 3 7 4
Manhattan 4 3 2 9 4
MimerDesk 6 2 1 7 4
OpenUSS 4 2 2 9 3
Eledge 2 4 1 7 3
Uni Open Platform 2 1 2 6 2
OLMS 2 2 1 3 2
WhiteBoard 2 2 0 5 2
COSE VLE 2 1 0 0 1

Table F.7: Weights

Criterion Weight
Functionality 35
Community 30
Release Activity 25
Age 10
Total 100

Appendix F. Selection Results 68

F.7 Chart

Moodle

ATutor

ILIAS

Claroline

Dokeos

LON-CAPA

DotLRN

Bodington Commons

Sakai

Bazaar

FLE3

Manhattan

MimerDesk

OpenUSS

Eledge

Uni Open Platform

OLMS

WhiteBoard

COSE Virtual Learning Environment

0123456789

1
0

T
o
ta

l
S
co

re
s

Fe
a
tu

re
 s

e
t

C
o
m

m
u

n
it

y

R
e
le

a
se

 a
ct

iv
it
y

Lo
n

g
e
vi

ty

T
o
ta

l
/

1
0

0

Figure F.1: Chart of the Selection Scores

Appendix G

Moodle Philosophy

Source: http://moodle.org/doc/?frame=philosophy.html

G.1 Philosophy

The design and development of Moodle is guided by a particular philosophy of learn-
ing, a way of thinking that you may see referred to in shorthand as a ‘social construc-
tionist pedagogy’. (Some of you scientists may already be thinking ‘soft education
mumbo jumbo’ and reaching for your mouse, but please read on – this is useful for
every subject area!)

This page tries to explain in simple terms what that phrase means by unpacking
four main concepts behind it. Note that each of these is summarising one view of an
immense amount of diverse research so these definitions may seem thin if you have
read about these before.

If these concepts are completely new to you then it is likely that these ideas will be
hard to understand at first – all I can recommend is that you read it carefully, while
thinking about your own experiences of trying to learn something.

G.1.1 Constructivism

This point of view maintains that people actively construct new knowledge as they
interact with their environment.

Everything you read, see, hear, feel, and touch is tested against your prior knowledge
and if it is viable within your mental world, may form new knowledge you carry with
you. Knowledge is strengthened if you can use it successfully in your wider envi-
ronment. You are not just a memory bank passively absorbing information, nor can
knowledge be ‘transmitted’ to you just by reading something or listening to someone.

This is not to say you can’t learn anything from reading a web page or watching
a lecture, obviously you can, it’s just pointing out that there is more interpretation
going on than a transfer of information from one brain to another.

69

http://moodle.org/doc/?frame=philosophy.html

Appendix G. Moodle Philosophy 70

G.1.2 Constructionism

Constructionism asserts that learning is particularly effective when constructing
something for others to experience. This can be anything from a spoken sentence
or an internet posting, to more complex artifacts like a painting, a house or a soft-
ware package.

For example, you might read this page several times and still forget it by tomorrow –
but if you were to try and explain these ideas to someone else in your own words, or
produce a slideshow that explained these concepts, then I can guarantee you’d have a
better understanding that is more integrated into your own ideas. This is why people
take notes during lectures, even if they never read the notes again.

G.1.3 Social Constructivism

This extends the above ideas into a social group constructing things for one another,
collaboratively creating a small culture of shared artifacts with shared meanings.
When one is immersed within a culture like this, one is learning all the time about
how to be a part of that culture, on many levels.

A very simple example is an object like a cup. The object can be used for many things,
but its shape does suggest some ‘knowledge’ about carrying liquids. A more complex
example is an online course – not only do the ‘shapes’ of the software tools indicate
certain things about the way online courses should work, but the activities and texts
produced within the group as a whole will help shape how each person behaves within
that group.

G.1.4 Connected and Separate

This idea looks deeper into the motivations of individuals within a discussion. ‘Separate’
behaviour is when someone tries to remain ‘objective’ and ‘factual’, and tends to de-
fend their own ideas using logic to find holes in their opponent’s ideas. ‘Connected’
behaviour is a more empathic approach that accepts subjectivity, trying to listen and
ask questions in an effort to understand the other point of view. ‘Constructed’ be-
haviour is when a person is sensitive to both of these approaches and is able to choose
either of them as appropriate to the current situation.

In general, a healthy amount of connected behaviour within a learning community is
a very powerful stimulant for learning, not only bringing people closer together but
promoting deeper reflection and re-examination of their existing beliefs.

G.1.5 Conclusion

Once you are thinking about all these issues, it helps you to focus on the experiences
that would be best for learning from the learner’s point of view, rather than just
publishing and assessing the information you think they need to know. It can also
help you realise how each participant in a course can be a teacher as well as a learner.
Your job as a ‘teacher’ can change from being ‘the source of knowledge’ to being an
influencer and role model of class culture, connecting with students in a personal way

Appendix G. Moodle Philosophy 71

that addresses their own learning needs, and moderating discussions and activities
in a way that collectively leads students towards the learning goals of the class.

Obviously Moodle doesn’t force this style of behaviour, but this is what it is best at
supporting. In future, as the technical infrastructure of Moodle stabilises, further
improvements in pedagogical support will be a major direction for Moodle develop-
ment.

Appendix H

ATutor Philosophy

Source: http://atutor.ca/philosophy.php Retrieved July 26, 2005.

H.1 Introduction

In designing ATutor we have had the specific goal in mind of creating an adaptive
learning environment that anyone could use. Regardless of how people go about
learning, and regardless of the technology they might be using to learn online, ATutor
is designed to accommodate all learners.

Human learning is highly complex, and ATutor can’t hope to adapt to all the intrica-
cies in the ways people interact with the world (anytime soon ;-)). A simplified six
point model that draws on popular understanding of learning and the structure of
knowledge, provides a starting point for developing an intelligent learning environ-
ment that adapts to all who use it.

H.2 Learning and Knowledge

Underlying ATutor’s navigation structures and visual presentation is an understand-
ing of the perceptual forms information takes on, an understanding of the senses
through which people prefer to absorb and process information, and an understand-
ing of the structural representations knowledge takes on in memory.

H.2.1 Perceptual Learning and Processing Styles

Perceptual style refers to the tendency people have to lean toward learning strategies
and learning situations that favour their visual, verbal, or their kinesthetic faculties.
These faculties roughly correspond to abilities of imagery, auditory/verbal processing,
and physical coordination. In most cases learners use all three faculties, but tend to
prefer one over the others.

1. Visual

Visual learners like to see or imagine things as their preferred means of learn-
ing. They learn by watching or viewing information. Knowledge tends to be

72

http://atutor.ca/philosophy.php

Appendix H. ATutor Philosophy 73

represented in pictures. Architects, artists, and engineers tend to be visual
learners.

2. Verbal

Verbal learners like to hear or verbalize things as their preferred means of
learning. They learn through hearing, saying and reading information. Knowl-
edge takes on an auditory nature as new information is being absorbed. Writers,
speakers, and public personalities tend to be verbal learners.

3. Kinesthetic

Kinesthetic learners like to do or experience things as their preferred means of
learning. They learn through activities and movement. Knowledge takes on a
physical feeling of the circumstances under which learning occurred. Athletes,
inventors, and craftsmen tend to be kinesthetic learners.

H.2.2 Structural Representations of Knowledge

Knowledge is ‘encoded’ in memory in structural representations of relationships be-
tween facts and ideas. The perceptual ‘sense’ of information as described above, is in-
terconnected in Webs, hierarchies, and chains that arrange knowledge into ‘schemas’
or ‘scripts’ representing units of factual information or mental procedures, respec-
tively.

4. Global

Global learners structure information in webs. Information is interconnected,
with related topics linked to each other through weighted threads. Knowledge
takes on a ‘big picture’ structure through understanding the general concepts
within a content area, creating a framework to which more detailed information
can be connected.

5. Hierarchical

Hierarchical learners structure information in trees. More general ideas have
subordinate ideas associated with them, which in turn have subordinate ideas
associated with them. Knowledge takes on a structure much like a computer
directory tree, with folders, sub folders, and files at varying depths.

6. Sequential

Sequential learners structure information in chains. Topics begin and end, and
follow a straight path through a sequence of ideas. Knowledge takes on a linear
structure much like a time line, or step by step procedures.

H.3 Web Accessibility

Web accessibility generally refers to the ‘inclusiveness’ of Web content, or the ability
of people with disabilities to gain access to that information using assistive technol-
ogy. It can also refer to access for those using older technology to access the web,
those accessing at lower bandwidths, or those accessing with limited experience or

Appendix H. ATutor Philosophy 74

other special needs. ATutor adopts many strategies to ensure accessibility to both
learners of diverse skill and ability, and to learners using older or specialized tech-
nologies who are learning online.

H.3.1 Web Content Accessibility

The Web Content Accessibility Guidelines 1.0 published by the W3C provides the
initial model of accessibility for ATutor. Guidelines represent technical issues that
must be addressed to ensure that all attempting to access information can do so with
relative ease. WCAG 1.0 provides the framework for creating an application that will
work with any technology accessing it over the Web.

Looking ahead to WCAG 2.0, usability is addressed with greater emphasis, providing
guidelines for accommodating abilities as well as technologies. Web content adapt-
ability addresses the inclusive usability of information.

H.3.2 Web Content Adaptability

Based on the six point model outlined above, ATutor presents information in visual,
verbal, and kinesthetic perceptual forms, as well as global, hierarchical, and sequen-
tial structural forms.

Perceptual Adaptability

1. Visual

Icons are used throughout ATutor to represent tools, ideas, and resources in
visual form. The visual layout can be adapted to each learner’s preference and
saved for future use, providing a consistent arrangement of ATutor features and
navigation tools. Hierarchical presentations within the menus and the Sitemap
also provide visual representations of the content structure. Within the Global
and Local menus a learner’s position within ATutor content is always high-
lighted, giving them a visual cue to their location within a collection of ideas.

2. Verbal

ATutor is presented in verbal form by default. ATutor can be reduced to a text
presentation alone if learners prefer to read (or listen to) content rather than
view or visualize it. A text only presentation also ensures that all informa-
tion can be accessed by any technology that reads HTML. ATutor development
efforts also include the creation of a verbal feedback module (ATalker) that ren-
ders ATutor in audio form so learners can hear the environment as they navi-
gate through it, and listen to content using an onthefly Text-to-Speech server.

3. Kinesthetic

ATutor is highly interactive and consistently presented throughout. Learners
‘use’ ATutor to present content in a form that suits their perceptual styles, and
can structure information into global webs, hierarchical trees, and sequential
chains. Consistent layouts allow users to develop keyboard access strategies

Appendix H. ATutor Philosophy 75

creating mental sequences of physical movements, or physical procedures, al-
lowing them to automate their use of the environment and devote more mental
resources to learning the content being presented.

Structural Adaptability

4. Global

Information can be presented in ‘wholes’ that allow learners to develop ‘big
pictures’ of topic areas, familiarizing themselves with the main ideas within a
larger topic as a framework for learning the finer details. The Sitemap presents
an entire ATutor course as a tree of linked page titles, allowing learners to see
the course topics in their entirety and jump around from topic to topic as they
become relevant to ongoing learning. The Global Menu also presents the course
as a whole, though the portion of the course displayed can be controlled by learn-
ers, giving them the ability to limit the amount of information presented at any
one time. A course search engine also allows learners to move through content
in a global manner.

5. Hierarchical

The Sitemap and Global menu, as well as the Local menu, the breadcrumb
string, heading navigation, and Table of Contents navigation, provide learners
with hierarchical strategies for moving ‘up and down’ through ATutor content.

6. Sequential

Next and previous links allow learners to move through ATutor content in a
predefined order. If they leave the sequence of topics, to go to the discussion
forums to post a message for example, they can use the resume link, or high-
lighted titles in the menus to return to the position in the content where they
left off.

H.4 Intelligent Learning Environments

To reach our goal of creating an adaptive learning environment, navigation patterns
and preference settings provide the data for tracking how learners use ATutor. In the
early versions of ATutor this data is collected in a static database (see: My Tracker,
or Course Tracker within ATutor), and is controlled by individual learners. In later
versions this data will be under the control of the system itself, monitoring learners’
click paths and modifications to their preference settings, and using the data to adapt
the learning environment to match the learning tendencies of each user.

Appendix I

CMS Evaluation

I.1 Community

I.1.1 Moodle

Moodle’s website, built in Moodle itself, is centered around the community. In every
section there are links to relevant forums and requests for participation.

From the main page of Moodle:

‘Moodle has a large and diverse user community with over 50,000 users registered on
this site alone, speaking 60 languages in 115 countries. The best place to start is ‘Using
Moodle’, which is where the main international discussions are held in English, but
we have a variety of groups discussing other topics and in other languages.’

The documentation page, for example, links to several documentation forums, among
which the ‘Suggestions concerning basic Moodle documentation’ forum.

As stated in the selection step, the main course on the Moodle site, ‘Using Moodle’,
lists over 14000 topics. Other than that, there are 20 courses concerning language-
specific issues, among which are Chinese, Japanese, Arab, and the major European
languages. Each of these groups is concerned with the translation of Moodle, among
other things. They update the language files with each update of Moodle.

The number of users in the ‘Using Moodle’ course is over 3000. Not all users that
have signed up may be active participants though.

The bugtracker gives insight in the number of ‘official’ developers and their share in
the project. The main developer is clearly Martin Dougiamas, who takes on 63% of
the bugs. He is also a very active participant in the forums. A total of 34 developers
is listed who have had bugs assigned to them, meaning that they are responsible for
dealing with the issue. Twenty percent of the developers (the top seven) deals with
ninety percent of the bugs.

Responses

A sample of 200 topics from the ‘Using Moodle – General problems’ forum was used.
There were a total of 662 replies, 48 topics (24%) had no reply, 47 percent had 2 to 5

76

Appendix I. CMS Evaluation 77

replies. The dates of the last post of these 200 topics went from May 21, 2005 to June
13, 2005. This averages to 28 posts per day.

To make an accurate comparison with projects with a different activity rate, a two
month sample was used. This constitutes 516 topics, with a total of 1630 replies (av-
erage 3.16), 116 topics with 0 replies (22.5%), and 44% with 2–5 replies. An average
of 26 posts a day were made. These figures do not differ significantly from the results
gotten from the 200 topic sample.

The number of topics without replies is rather high. Some of these posts could include
‘nonsense’ posts that nobody bothered to reply to. However, a percentage this high
suggests that some genuine questions are not being answered.

I.1.2 ATutor

The ATutor forums are significantly smaller, with 1140 topics and 4247 posts. The
forums are being linked to as ‘Support Forums’ on the main page. There is also
a Community Discussion section on the main page linking to the sub forum. This
section was added recently (September 2004) and is meant for sharing experiences
with ATutor.

The number of registered users on the ATutor website was not listed.

The ATutor project does not seem to have a public bugtracker. The development
documentation states that bugs are to be reported in the bug report forum.

Responses

A sample of 200 topics from the ATutor support forum showed 611 replies, 20 (10%)
topics with no replies, and the largest percentage (40%) was the topics with one reply.
The period of these topics ranges from January 6, 2005 to June 13, 2005. Thus the
average number of posts per day is four.

The two month sample for ATutor had 73 topics, showing a few differences: 15% with
0 replies, 41% with one reply and an average number of posts per day of three.

I.1.3 Compared

The number of responses to the 200 topic sample is about the same. Moodle’s num-
ber of topics with no replies is rather high, but the activity level over time is much
higher than ATutor’s, both in the 200 topic sample and the two month sample. Aside
from that, keep in mind that Moodle has a wide range of forums beyond the general
problems forum (i.e. installation problems, and separate forums for each module in
Moodle). A more detailed comparison including all forums may give different figures.
It is very possible that the more detailed forums, for example for each of the modules,
get more responses per topic because the people responsible for that module check
that forum more often than the general forum is being checked. Further more, it is
well known that more detailed questions usually get better and more answers than
more general questions, which are more likely to be placed in the general forum in
case of Moodle.

Appendix I. CMS Evaluation 78

I.1.4 Score

Moodle: 9

ATutor: 5

I.2 Release Activity

I.2.1 Moodle

Moodle has made 26 releases since 1.0.

As seen in the selection, Moodle had made 13 of those releases since January 1 2004.
When viewing the release notes to see the significance of each release, Moodle’s re-
lease notes are quite long.

I.2.2 ATutor

ATutor has made a total of 14 releases. ATutor has made six releases since January 1,
2004. ATutor’s release notes are shorter that Moodle’s. Though some of the difference
may be explained by different wording and mentioning of more detailed changes, in
this case it appears that the description of the changes are reasonably equal.

I.2.3 Score

Moodle: 10

ATutor: 6

I.3 Longevity

I.3.1 Age and version

Moodle

Moodle’s first version, 1.0, was released on August 20, 2002. It is now at version 1.5.

I.3.2 ATutor

ATutor’s first release was version 0.9.6, on January 11, 2002. Its 1.0 release was on
December 2, 2002. It is now at version 1.4.3 with 1.5 in beta.

There is no significant difference between these figures.

Moodle: 10

ATutor: 10

Appendix I. CMS Evaluation 79

I.3.3 New Technology: PHP 5

Both products are built using the web language PHP. The PHP project has recently
released a new main version of the language, PHP 5. This new version has not been
adopted by everyone yet, but it is to be expected that it will become more and more
used over the next year. There have been some issues with backwards compatibil-
ity, meaning that programs written for the previous version (PHP 4) do not always
work properly in the new version, because certain functionality has changed or been
deprecated.

According to the documentation, Moodle using PHP 5 is supported as of Moodle 1.4.
This version was released August 31, 2004, one and a half months after the first
official release of PHP 5 (Moodle, 2005e).

Though ATutor does not list PHP 5 as supported in the requirements section of the
documentation (it says PHP 4.2.0 or higher, which does imply PHP 5 as well) (ATutor,
2005a), a forum post1 does confirm that ATutor supports PHP 5. Information on
the first version that was supported was not found. The ACollab tool, which can be
added to ATutor to add group functionality, does not currently support PHP 5 and
will probably not support it officially until the fall of 20052.

Moodle: 10

ATutor: 8

I.3.4 Score

Moodle: 10

ATutor: 9

I.4 License

Both ATutor and Moodle are licensed under the latest version of the GNU GPL (Ver-
sion 2, June 1991). As mentioned before this is one of the most used licenses in the
Open Source world.

I.4.1 Score

Moodle: 10

ATutor: 10

I.5 Support

I.5.1 Community

The level of community support depends largely on the activity level of the commu-
nity in the discussion areas. This was established in the community criterion, as

1 http://www.atutor.ca/view/2/2469/1.html
2 See http://www.atutor.ca/view/9/4567/1.html

http://www.atutor.ca/view/2/2469/1.html
http://www.atutor.ca/view/9/4567/1.html

Appendix I. CMS Evaluation 80

stated above. In order to evaluate the quality of the replies and speed of replies, in
terms of being to the point and complete in answering the question, as well as how
fast the first good answer was given to a question, a number of posts, with different
reply numbers were chosen.

Moodle

The activity level at Moodle’s community is high. This increases the chance of getting
questions answered. There are a number of regular posters that often answer ques-
tions. This number is between five and ten for the general areas. With this number
of people contributing to community support on a very regular basis, the chance of
getting an answer is reasonably high.

The speed of replies is pretty high, many questions had a reply within an hour, almost
all within a day. The fact that it takes almost a day sometimes could be due to the
fact that Moodle offers a subscription service to the forums, customisable for each
forum, that allows the user to either receive an email of each forum post or to receive
daily digest e-mails, that give an overview of all posts made in the last 24 hours, sent
out at a fixed time every day.

The quality of community support in terms of forum replies is high. Most people
are very willing to help in answering questions, asking for additional information
when needed. Sometimes people asking a question express themselves very poorly,
showing a language barrier, but those posts are handled gracefully in most cases
as well. When something asked for is not possible, often it is either already being
thought about and/or being planned to be implemented, or it is seriously discussed
as an option to implement it. Users also offer tutorials and workarounds that they
have that are relevant to the problem. The Moodle Documentation course’s forums
also have a ‘how-to’ forum where users can contribute ‘how-to’ tutorials, such as ‘How
to put courses in the middle of the front page’ and ‘How to add a new activity’. This
forum is pretty active, showing how willing the users are to participate and contribute
to the project.

As far as the organisation goes, the areas are well defined and pretty logical consid-
ering Moodle’s modular structure – each module has their own forum, and all have a
good amount of activity, with multiple posts per day. Other areas include documen-
tation and development, each with several forums.

ATutor

The activity level at ATutor’s community is significantly lower than Moodle’s. The
chance of getting a question answered in this light is lower. One person (with user
name ‘greg’) dominated most of the replies to support questions. This would mean
a too heavy reliance on one person to get answers from, which poses a risk to com-
munity support levels. The response time varies, sometimes two hours or less, some-
times half a day, and in some cases it takes several days before a reply is posted.

The quality of the replies is somewhat lower at ATutor than observed at Moodle’s
community. Most issues dealt with are rather low level, giving simple solutions to
problems. This is in part due to the simple questions being asked on these forums.

Appendix I. CMS Evaluation 81

Not much discussion about the functionality and possibilities of the software seems
to be taking place here.

The support forums are organised by the components that are available from the
ATutor project, namely ATutor, ACollab (adding group functionality to ATutor), AChat
and AForm. The activity in the other component’s areas is quite low, but the distinc-
tion seems logical.

Moodle: 10

ATutor: 5

I.5.2 Paid Support

Moodle

Moodle’s creator, Martin Dougiamas, has also founded moodle.com:

‘The Moodle Partners are a group of service companies guided by the core developers of
Moodle. We provide a range of optional commercial services for Moodle users, includ-
ing fully-serviced Moodle hosting, remote support contracts, custom code development
and consulting.’

(moodle.com, 2005)

Various partners are listed on this site as paid support options, from various coun-
tries, including USA, Canada, United Kingdom, Italy and Spain.

ATutor

ATutor has its own support contracts and also lists other service providers, though
only one of those has support listed explicitly, the others are mostly offering hosting
and custom development.

Moodle: 10

ATutor: 7

I.5.3 Score

Moodle: 10

ATutor: 6

I.6 Documentation

I.6.1 Moodle

Moodle’s Documentation section is a separate course, linked from the main page’s
menu. It contains the following main sections:

• About Moodle – Information on Moodle itself, its background, philosophy, etc.
and sections on the license, features, future plans, and credits.

Appendix I. CMS Evaluation 82

• Administration – Installation instructions and FAQ3, information on installing
Apache, PHP and MySQL (the web server, programming language and database),
and a section on upgrading.

• Using Moodle – Teacher Manual.

• Development – Developer’s Manual, coding guide, using CVS4 and Transla-
tion.

There is a section containing user contributed documentation (Moodle, 2005d): A stu-
dent manual, an extensive teacher manual (127 pages), another manual for teachers,
trainers and administrators, counting 58 pages, and there is also a link to a 240 page
book that has just been published in July 2005 by O’Reilly publishers, called ‘Using
Moodle’ (OReilly, 2005). There’s also a section on presentations that users have con-
tributed that they have used in various situations to present and promote Moodle,
and a section of how-tos that are mostly user-contributed. The course also links to
the appropriate forums to post questions and suggestions on the documentation. The
forums are used for discussion about the documentation.

The default Moodle installation provides question mark signs with every section or
option that has a section in the included online help. This help file is also included in
all the translations of the software. The standard documentation is also available in
a local installation by going the doc/ directory in the browser.

A few user-contributed translations of the documentation are available: Dutch, French
and Italian versions of the Teacher Manual and a Spanish version of the Study Guide
and Example How-To’s.

The Developer documentation explains how Moodle is organised, and what the gen-
eral philosophy is. It gives information on the structure of the modules, and instruc-
tions on how to add a module. It also gives code guidelines. The source code files each
have a brief description of the file’s purpose on top and some comments throughout
the file.

I.6.2 ATutor

ATutor has a documentation section clearly marked in the menu on the main website.
It contains installation instructions for three versions of the software, information on
the software requirements, the configuration variables, information on the accessibil-
ity options and a FAQ section. It also gives information on how to go about creating
a translation of the software and how to contribute this back to the project. There
is also a ‘How-To Course’, which apparently contains the official documentation, ac-
cording to the description on the website:

‘The ATutor How-To course is the official ATutor documentation. The course describes
how to use ATutor as a student, how to create and manage online courses, and how to
administer an ATutor course server.’

3 Frequently Asked Questions
4Concurrent Version System, used when multiple developers work on the same code, see http:

//www.cvshome.org/

http://www.cvshome.org/
http://www.cvshome.org/

Appendix I. CMS Evaluation 83

This How-To course is browseable on the ATutor demo server and can also be down-
loaded. This is a plus, because the user documentation can be offered on the installa-
tion for the users, and since it is built in ATutor it makes use of ATutor’s accessibility
options and standards, so the user documentation is just as accessible as any other
course content. This documentation course appears well organised and reasonably
complete.

There is one translated documentation file available in Chinese.

The documentation section also links to developer documentation, which is a doc-
ument containing code conventions, information on the configuration used, getting
ATutor from SVN5 and the structure of ATutor’s files and databases.

A few code files, including classes, were checked for code comments. The files all
had a copyright declaration at the top but no description of the purpose of the file.
There were a few comments in each file to explain some sections but the number of
comments was rather low. The developer documentation gives a good example of how
to describe a function’s use and parameters, but this type of comment in the files
themselves was not found.

A discussion area or group concerning documentation could not be found. The docu-
mentation files in the How-To course were updated in September 2004.

I.6.3 Score

Moodle: 9

ATutor: 7

I.7 Security

Two of the large security advisories, SecurityFocus and Secunia, were used to search
for vulnerabilities in the ATutor and Moodle software. Moodle had a few listings.
ATutor had 1 vulnerability reported in both, which is very recent (June 16), and
has no fix as of yet (July 11). Evidence that the ATutor team is even aware of this
vulnerability at the moment was not found.

The advisories showed six to seven vulnerabilities for Moodle. Both had listed mostly
the same alerts. All vulnerabilities are patched in the latest version. The vulnerabil-
ities were reported by the vendor in almost all cases, meaning the the Moodle team
reported the problem themselves after providing a new version of the software that
solves it, so the users can be alerted to the problem so they can upgrade. A vulner-
ability report containing a number of problems in the bugtracker was responded to
almost immediately (within one hour) and the stable release containing the fixes was
released a week after the problem was reported in the bugtracker.

Moodle has a public bugtracker in which any problems are reported and the status of
new features is being kept. The reaction time to critical problems in the core of Moo-
dle is very good, in less than a day most problems are solved. The modules’ problems
are assigned to the modules’ creators and sometimes take a little longer, something

5Subversion, a version management system similar to CVS. See http://subversion.tigris.
org/

http://subversion.tigris.org/
http://subversion.tigris.org/

Appendix I. CMS Evaluation 84

to be expected with add-ons like this. Still, time between problem discovery and fix
is less than a week.

ATutor does not have a public bugtracker, just a forum to report problems. The level
of activity there is not very high. The reaction time cannot be pinpointed precisely
because many threads are replied to with the message that ‘the problem has been
added to the bugtracker’ or ‘we will try to fix the problem in version 1.5’. Certain
issues the author has observed personally have not been fixed properly even after a
few months.

Because no indication that ATutor has serious security problems was found, a mini-
mal score is not given. However, the score will not be very high due to the obscurity
of the bugtracker, the lack of activity and high response time.

I.7.1 Score

Moodle: 9

ATutor: 4

I.8 Functionality

The feature lists of the two applications do not give a conclusive answer in this case.
ATutor and Moodle each have their own philosophy and thus a different approach to
describing their application. The choices of what features to describe and which types
not to describe also differs. Apart from that, the Moodle feature list is self-admittedly
not complete: ‘Moodle is an active and evolving product. This page lists just some of
the many features it contains’, and some of the included modules are not described at
all. Therefore it is not enough to put the feature lists side by side.

Both applications were installed on a test-environment to explore the functionality.

The list of required functionality defined in Chapter 4 is used here.

• Course based

– Basic course information

– File sharing

– Communication

– Groups

– Tests and quizzes

• Access control

• Administration

• Language

For both applications, each of these items were evaluated to see to what extent and
how well it has been implemented. In addition, any additional functionality that may
prove useful in the University situation was taken into account.

Appendix I. CMS Evaluation 85

I.8.1 Moodle

Moodle is course based, and also supports global items that are available for all users
on the main page.

General information is set in the course settings and can be added to the main page
using a block6. Announcements can be posted on the main page using the News
forum that is created automatically for each course. Lecturers can be found in the
participants list where the user can view the profiles of the users in the course.

The courses can be organised in different ways. There are three course formats in-
cluded: Weekly, by topic and discussion focused. The first two allow different sections
for each week/topic where each section can contain any number of resources and ac-
tivities that Moodle has.

File sharing: The lecturer can upload files in the course area and link to them from
different sections of the course page. Students can attach files to several resources,
such as assignments and wiki pages.

Communication: Forums can be created to allow discussions. Just like all the other
activity modules, the forum can be set for different levels of group access, meaning
they can be global to all users, or separate forums for each group, with or without the
other groups being able to see each other’s forums. A chat module can also be added
to allow real time communication between students with the same access possibilities
as mentioned above. Past chat sessions can be viewed. Access to these sessions can
be set by the teacher.

Groups can be created by the teacher, who can also add the students to the groups.
The teacher can also allow the students to assign themselves to groups. Because
group access levels can be set for each activity, group work can be done in many
different ways.

Tests and quizzes: The quiz activity allows a teacher to define a quiz with several
types of questions, such as multiple choice, short answers, and numerical. Different
types of grades are also available, and the grading can be either automatic or done
by hand.

Access control can be accomplished through many different ways. Moodle supports
authentication using the following methods and/or protocols:

• LDAP – Lightweight Directory Access Protocol, used by many universities and
in other large networks for authentication

• IMAP / POP3 / NNTP – Mail servers. If the users all have mail accounts on a
central server, authentication can be done using that login information

• External Database – defining a database table with the users’ information

• Manually – users register themselves by filling in a registration form
6Blocks are separate pieces that can make up a page, usually can be positioned in different places,

for example in a three column layout, like Moodle, can be positioned on the left, middle or right of the
page and moved up and down, switching positions with other blocks. A block can contain links, text or
other information, like a summary of news items

Appendix I. CMS Evaluation 86

Various other authentication methods are being added or have been added.

Access control to different parts within Moodle is done by assigning roles and by
defining levels of access. For example, a teacher can maintain courses, a course cre-
ator can also create them. The required access level can be set for each course, in
terms of guest access (allowed or not allowed), and optionally using an enrolment
key, which can be a word or phrase that the student needs to enter in order to get
into the course.

An administrator can define all the settings of the Moodle site as well as perform
all the other tasks such as creating and maintaining courses. On a global level the
administrator can change many settings, such as the authentication method, edit
users, assign roles, set the global theme (look and layout of the site), set the default
language and what other languages are available and so on.

Moodle has 61 languages packages available (Moodle, 2005f). The administrator can
define which of these are available in the installation. The user can choose which
language he or she wants to use on the global site, and for each course a default
language can be set and this languages can optionally be ‘forced’, meaning the user
cannot override the language setting, so the course interface will always be in one
language only.

Additionally, Moodle has a number of extra features. Moodle offers modules that can
be used per section or globally in each course. These consist, apart from the features
mentioned above, of the following:

• Assignments – where students can hand in documents and such that can be
graded.

• Glossary – where terms can be defined either by the teacher or also by the
students. The settings can allow a term to be defined more than once or only
once. The glossary can be one of several different formats, such as encyclopedia,
dictionary and FAQ.

• Lesson – a certain way of presenting content to the students, with pages and
intermittent questions where the answers can define whether a student can
move on the next page or not. The lessons are very customisable with many
settings and options

• Wiki – a wiki is a type of content system where users can contribute in a very
straightforward way by editing pages. A well known example is wikipedia, an
online encyclopedia maintained by anyone who has something to add. This type
of tool is discussed much lately in terms of collaborative learning. The wikis,
once again like any other module, can be used on a per-group basis or globally.

• Workshop – a peer assessment activity allowing participants to assess each
other’s projects

These are the modules that are supplied with Moodle by default. However, the struc-
ture of Moodle allows modules to be added very easily. Instructions are available on
the Moodle website how to add a module and what its structure should be. There are
additional modules available at the Moodle website (Moodle, 2005g), including Dia-
logue, Flash (for flash movies), Book and several others, that are either contributed
by other users or are still in development status.

Appendix I. CMS Evaluation 87

Apart from the modules, there are numerous other additional features, such as user
logging and tracking, a calendar listing site events, course events and user events,
a backup facility to create backups of courses and the entire site, mathematics tools
and a HTML editor for most text fields.

I.8.2 ATutor

ATutor is course based. General information on the course can be put into announce-
ments on the main page. It does not seem to have any separate sections in which the
user can get information on the teachers.

The teacher can upload files through a file manager and link to them in other course
content.

By using the ACollab add-on for group functionality, groups can share files through
their group area.

Communication: The teacher is able to send email to students through ATutor. With
ACollab groups can chat and use a forum for communication.

Groups can be created through the ACollab interface by the teacher. The teacher can
add users to the groups. The group interface allows users to use forums and chat, as
well as share a calendar. There is also a drafting room for sharing documents.

Tests and quizzes: The teacher can create tests and surveys, with several types of
questions such as multiple choice, open ended, and true false. These tests can be self
marking. The test can be released for a certain period.

Access control – for the moment it appears that ATutor only has the ability to use
manual registration for authentication. According to some forum posts they are
working on integrating LDAP into ATutor.

The ATutor administrator can manage existing users, courses, assign instructors
to courses, create course categories and define the site’s language and theme. The
administrator can also start a new translation in ATutor itself and later donate this
translation back to the ATutor project for others to use.

There are 15 languages available for ATutor (ATutor, 2005b). The administrator can
install these language packs on the server. This can be done through a local file
or directly from the ATutor website. The preferred language can be chosen by the
user and changed at any time. The primary language for a course can be set by the
instructor.

ATutor has some additional functionality, namely a course glossary, content export,
backup manager and an enrolment manager to import course lists and manage user
privileges.

I.8.3 Overall

When comparing the features of Moodle and ATutor it appears that Moodle’s features
are very rich where most of ATutor’s are more basic. Also, additional functionality
offers much more in Moodle than in ATutor. It seems that ATutor’s focus on accessi-
bility takes away some of the attention from enriching and adding of features. Some
technical issues came up during installation of ATutor and ACollab, while Moodle

Appendix I. CMS Evaluation 88

installs and upgrades smoothly time and again. Moodle appears much more comfort-
able and intuitive to navigate and work with than ATutor.

I.8.4 Score

Moodle: 9

ATutor: 6

I.9 Integration

Integration of software is accomplished in several ways.

I.9.1 Modularity

Modularity enables easier integration of existing code. When a modular structure is
used, other modules can be added easily. Moodle has such a structure for activities,
as well as themes, which define the look of the site, languages, and in a lesser extent
for course formats.

ATutor does not appear to have such a modular structure to allow addition of features
in the same manner.

I.9.2 Standards

Official and de facto standards exist for many different types of applications. In the
E-Learning sphere the most important standard is actually a collection of standards,
named SCORM (Sharable Couseware Object Reference Model) consisting of several
IMS standards for content structure and packaging and some other standards and
guidelines for content, packaging, sequencing and navigation.

Both ATutor and Moodle have SCORM compatibility in that they can ‘play’ SCORM
packages.

I.9.3 Compatibility with other applications

In this case, compatibility with other software will mostly be relevant in terms of doc-
ument processing and such. Moodle has some filters available that allow, for exam-
ple, to show mathematical equations and TeX7 documents. ATutor does not appear
to have such compatibilities.

In terms of authentication, as seen with functionality, Moodle has a large number
of options, compatible with systems such as mail servers and LDAP, while ATutor
currently does not support other authentication methods.

Moodle can be optionally integrated with several other web applications such as Con-
tent Management Systems, for example Mambo, Xoops and Postnuke, web hosting
control panels that allow for simple installation of applications like Moodle, such as

7 typesetting system popular among academia (Wikipedia, 2005c)

Appendix I. CMS Evaluation 89

CPanel and Plesk, and Moodle is also available as a Debian package, allowing for
easy installation on Debian Linux systems.

Software Requirements

Both ATutor and Moodle run on PHP. ATutor is a little more restrictive in its require-
ments:

Moodle (Moodle, 2005e):

1. Web server software. Most people use Apache, but Moodle should work fine
under any web server that supports PHP, such as IIS on Windows platforms.

2. PHP scripting language (version 4.1.0 or later). PHP 5 is supported as of Moodle
1.4.

3. a working database server: MySQL or PostgreSQL are completely supported
and recommended for use with Moodle.

Moodle also names the flexibility in the developer documentation: ‘Moodle should
run on the widest variety of platforms‘ (Moodle, 2005c).

Atutor (ATutor, 2005a)

1. HTTP Web Server (Apache 1.3.x is recommended. Do not use Apache 2.x).

2. PHP 4.2.0 or higher with Zlib and MySQL support enabled (Version 4.3.0 or
higher is recommended).

3. MySQL 3.23.x or higher, or 4.0.12 or higher (MySQL 4.1.x and 5.x are not offi-
cially supported).

Score

Moodle: 10

ATutor: 7

I.9.4 Total Score

Moodle: 9

ATutor: 5

I.10 Goal and Origin

Moodle’s origin is clearly explained in the ‘Background’ page of the documentation
(Moodle, 2005a). As discussed in Chapter 4, it was started as part of a PhD research
project. The philosophy is included in the documentation as well, explaining the
social constructionist pedagogy on which the design of Moodle is based. The devel-
opment documentation also explains some of the goals in terms of programming and

Appendix I. CMS Evaluation 90

compatibility, focussing on a wide compatibility, easy installation and upgrade, and
modularity. The future plans are depicted in the roadmap (Moodle, 2005i), showing
the proposed feature additions for the next three versions.

Apart from ATutor’s clear statement to focus on accessibility, information on ATutor’s
background was not found, in terms of the motivation of the developers and for whom
the project was created and is being developed.

The ATutor roadmap (ATutor, 2005e) gives a general impression of future plans, such
as the addition of add-ons and content packaging options.

I.10.1 Score

Moodle: 10

ATutor: 5

I.11 Overall observation

When trying to establish the information above about both projects, a significant
difference was observed, mostly in information availability. Where for ATutor the
author had to search for much of the information and was not able to find out cer-
tain things, like the project’s origin and the goal of the developers, while the Moodle
website offered information in abundance, including links to articles of the research
project that got Moodle started. Also, the Moodle project has a very welcoming com-
munity feel to it, where the visitor is encouraged to participate at every turn, where
ATutor seems more distant in that respect. Though the developers of ATutor may
certainly not be unwilling to allow users to participate, the ATutor project’s website
does not do much to encourage that.

Appendix J

Remarks on validity of case
study results

The top five from the selection result was:

• Moodle
• ATutor
• ILIAS
• Claroline
• Dokeos

The top two of these were evaluated in depth. Moodle came out very strong.

Each of these systems is discussed briefly below in terms of their real-life perfor-
mance, in reverse order.

Dokeos and Claroline Dokeos originated from Claroline, when a number of devel-
opers left the Claroline project in the summer of 2004 and started the Dokeos project
using the Claroline code base. These systems do not differ enough at this time to
investigate them separately.

The Vrije Universiteit Brussel (VUB) has chosen to implement Dokeos institution-
wide under the name PointCarré, replacing their Blackboard installation. They eval-
uated a short list of Claroline/Dokeos, Moodle and Blackboard. In part because of
location (the Claroline/Dokeos project team resides in Belgium, like the VUB), the
choice was made in favour of Claroline/Dokeos (VUB, 2004). They are now working
closely with the developers.

ILIAS ILIAS is created by the University of Cologne, Germany. It is used there
institution-wide (ILIAS, 2005).

A comparison report by the Commonwealth of Learning (COL)1 compared Open Source
CMSs, with a candidate list of 35 and a short list of 5: Moodle, LON-CAPA, ILIAS,
dotLRN and ATutor. ILIAS came in second in this report (COL, 2003).

1http://www.col.org

91

http://www.col.org

Appendix J. Remarks on validity of case study results 92

ATutor ATutor was the top system in the COL report (COL, 2003).

Another article from ‘Progress through Training,’ a training centre in the United
Kingdom, compared Moodle, Claroline and ATutor. It was published in August 2003,
and recommended ATutor as first choice (Clements, 2003).

Moodle Moodle was the CMS of choice for Dublin City University last year when
they evaluated CMS options. It is now used there institution-wide. This decision was
made in an evaluation process, with a short list of Bodington, Claroline and Moodle
(McMullin and Munro, 2004).

Moodle was shortlisted in the COL (2003) report and the Clements (2003) report. It
is suspected it was not recommended at that time because its features were not as
elaborate as they are now.

Moodle has gotten coverage by many technology-oriented news sources, as well as
Linux Journal and a large number or research papers, all of which can be found
through the ‘Moodle Buzz’ page (Moodle, 2005b).

Moodle has also been chosen by a joined effort of two E-learning projects in New
Zealand. ‘NZ Open Source VLE project’ 2 and ‘The Open Source Courseware Ini-
tiative New Zealand’ 3 have chosen to use Moodle after comparing several systems
(Ose.Nz.Org, 2004).

2http://ose.nz.org
3http://www.elearning.ac.nz/

http://ose.nz.org
http://www.elearning.ac.nz/

	Summary
	Nederlandse Samenvatting
	Preface
	Contents
	1 Introduction
	1.1 Objective and Research Question
	1.1.1 Scope

	1.2 Method
	1.2.1 Literature
	1.2.2 Model
	1.2.3 Case Study

	1.3 Outline

	2 About Open Source Software
	2.1 Source Code
	2.2 Open Source software development
	2.3 Free or Open Source?
	2.4 Proprietary Software
	2.5 Culture & Movements
	2.6 Unique characteristics

	3 Open Source Software Evaluation
	3.1 The Criteria
	3.1.1 Goal and Origin

	3.2 Description of the criteria
	3.2.1 Community
	3.2.2 Release activity
	3.2.3 Longevity
	3.2.4 License
	3.2.5 Support
	3.2.6 Documentation
	3.2.7 Security
	3.2.8 Functionality
	3.2.9 Integration
	3.2.10 Goal and origin

	3.3 Selection
	3.3.1 The Selection Method
	3.3.2 The Criteria

	3.4 Evaluation
	3.4.1 Community
	3.4.2 Release Activity
	3.4.3 Longevity
	3.4.4 License
	3.4.5 Support
	3.4.6 Documentation
	3.4.7 Security
	3.4.8 Functionality
	3.4.9 Integration
	3.4.10 Goal and Origin

	3.5 Model overview

	4 Case Study: Course Management Systems
	4.1 Introduction
	4.2 Selection
	4.2.1 Elimination By Aspects
	4.2.2 Ranking
	4.2.3 Scoring Result

	4.3 Evaluation
	4.3.1 Introduction
	4.3.2 Evaluation Result
	4.3.3 Results

	4.4 Case Study: Conclusion
	4.4.1 Validity of Results

	5 Conclusion & Further Research Recommendations
	5.1 Research Results
	5.2 Contribution
	5.2.1 Target audience
	5.2.2 Scientific research

	5.3 Recommendations for Further Research
	5.3.1 The Model
	5.3.2 Open Source software in education

	Bibliography
	A The Open Source Definition
	B Community Activity
	C Case Study -- Functional Requirements
	D Use of CMSs in Dutch Universities
	E Candidate List
	F Selection Results
	F.1 Step 1: Elimination
	F.2 Functionality Scores
	F.3 Community Scores
	F.4 Release Activity Scores
	F.5 Longevity Scores
	F.6 Total Selection Scores
	F.7 Chart

	G Moodle Philosophy
	G.1 Philosophy
	G.1.1 Constructivism
	G.1.2 Constructionism
	G.1.3 Social Constructivism
	G.1.4 Connected and Separate
	G.1.5 Conclusion

	H ATutor Philosophy
	H.1 Introduction
	H.2 Learning and Knowledge
	H.2.1 Perceptual Learning and Processing Styles
	H.2.2 Structural Representations of Knowledge

	H.3 Web Accessibility
	H.3.1 Web Content Accessibility
	H.3.2 Web Content Adaptability

	H.4 Intelligent Learning Environments

	I CMS Evaluation
	I.1 Community
	I.1.1 Moodle
	I.1.2 ATutor
	I.1.3 Compared
	I.1.4 Score

	I.2 Release Activity
	I.2.1 Moodle
	I.2.2 ATutor
	I.2.3 Score

	I.3 Longevity
	I.3.1 Age and version
	I.3.2 ATutor
	I.3.3 New Technology: PHP 5
	I.3.4 Score

	I.4 License
	I.4.1 Score

	I.5 Support
	I.5.1 Community
	I.5.2 Paid Support
	I.5.3 Score

	I.6 Documentation
	I.6.1 Moodle
	I.6.2 ATutor
	I.6.3 Score

	I.7 Security
	I.7.1 Score

	I.8 Functionality
	I.8.1 Moodle
	I.8.2 ATutor
	I.8.3 Overall
	I.8.4 Score

	I.9 Integration
	I.9.1 Modularity
	I.9.2 Standards
	I.9.3 Compatibility with other applications
	I.9.4 Total Score

	I.10 Goal and Origin
	I.10.1 Score

	I.11 Overall observation

	J Remarks on validity of case study results

